首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
地球物理   4篇
地质学   8篇
  2022年   1篇
  2020年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  1993年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Groundwater is the most prioritized water source in India and plays an indispensable role in India's economy. The groundwater potential mapping is key to the sustainable groundwater development and management. A hybrid methodology is applied to delineate potential groundwater zones based on remote sensing, geographical information systems(GIS) and analytic hierarchy process(AHP) as on multicriteria decision making. For the purpose of demonstrating field application, Chittar watershed, Tamilnadu, India is studied as an example. The important morphological characteristics considered in the study are lithology, geomorphology, lineament density, drainage density, slope, and Soil Conservation Service–Curve Number(SCS-CN). These six thematic layers are generated in a GIS platform. Based on intersecting the layers, AHP method, the values for adopting the pairwise comparison normalized weight and normalized subclasses weightage were given. The normalized subclass weightage is input into each layer subclass. Then, weighted linear combination method is used to add the data layers in GIS platform to generate groundwater potential Index(GWPI) map. The GWPI map is validated based on the net recharge computed from the differences of measured groundwater levels between the pre-monsoon and post-monsoon in the year 2018. The kappa statistics are used to measure level spatial consistency between the GWPI and net recharge map. The overall average spatial matching accuracy between the two data sets is 0.86, while the kappa coefficient for GWPI with net recharge, 0.78. The results show that in Chittar watershed about 870 km~2 area is divided into high potential zone(i.e. sum of very high and high potential zone), 667 km~2 area, as the moderate one and the rest 105 km~2 area, as the poor zone(i.e. sum of very poor and poor potential zone).  相似文献   
2.
Mandal  Prantik  Srinagesh  D.  Vijayaraghavan  R.  Suresh  G.  Naresh  B.  Raju  P. Solomon  Devi  Aarti  Swathi  K.  Singh  Dhiraj K.  Srinivas  D.  Saha  Satish  Shekar  M.  Sarma  A. N. S.  Murthy  YVVBSN 《Natural Hazards》2022,111(3):2241-2260
Natural Hazards - Since the initial collision at 55 Ma, rocks of the Indian crust below the Himalayas have undergone modification chemically and compositionally due to the ongoing...  相似文献   
3.
A total of 162 groundwater samples for three representative seasons were collected from Salem district of Tamilnadu, India to decipher hydrogeochemistry and groundwater quality for determining its suitability for drinking and agricultural proposes. The water is neutral to alkaline in nature with pH ranging from 6.6 to 8.6 with an average of 8.0. Higher electrical conductivity was observed during post-monsoon season. The abundance of major ions in the groundwater was in the order of $ {\text{Na} > \text{Ca} > \text{Mg} > \text{K} = \text{Cl} > \text{HC}}{{\text{O}}_3}\; > \;{\text{S}}{{\text{O}}_4}\; > \;{\text{N}}{{\text{O}}_3} $ . Piper plot reveals the dominance of geochemical facies as mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3, Ca–Na–HCO3, and Ca–Cl type. NO3, Cl, SO4, and F exceed the permissible limit during summer and post-monsoon seasons. Sodium adsorption ratio was higher during post-monsoon and southwest monsoon season indicating high and low salinity, satisfactory for plants having moderate salt tolerance on soils. Permeability index of water irrespective of season falls in class I and class II indicating water is moderate to good for irrigation purposes. As per the classification of water for irrigation purpose, water is fit for domestic and agricultural purposes with minor exceptions irrespective of seasons.  相似文献   
4.
A study was carried in Mettur taluk, Salem district of Tamilnadu, India to develop a DRASTIC vulnerability index in GIS environment owing to groundwater pollution with increasing population, industries, and agricultural activities. Seven DRASTIC layers were created from available data (depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity) and incorporated into DRASTIC model to create a groundwater vulnerability map by overlaying the hydrogeological parameters. The output map indicates southwestern part of the study area with high pollution potential, northern and northwestern parts as moderate pollution potential and northeastern parts as low and no risk of pollution potential. For validating the vulnerability assessment, a total of 46 groundwater samples were collected from different vulnerability zones of the study area for two different seasons (pre- and post-monsoon) and analyzed for major anions and cations. Higher ionic concentrations were noted in wells located near highly industrialized, urbanized, and agricultural active zones. The water types represent Na–Mg–HCO3 and Na–Cl–HCO3 type indicating dominance of anthropogenic-related activities. Nitrate and chloride were demarcated as pollution indicators and correlated with DRASTIC vulnerability map. The results show that southwestern, northwestern, and northern parts of the study area recorded with high and moderate vulnerable zones, record higher nitrate values. In contrast to DRASTIC method predicted, low vulnerable zones show higher chloride concentration may be due to agricultural and urban development.  相似文献   
5.
The present work investigated the biosorption of nickel from synthetic and electroplating industrial effluents using a green marine algae Ulva reticulata. Preliminary batch results imply that pH 4.5 was optimum for nickel uptake and the isotherm experiments conducted at this pH condition indicated that U. reticulata can biosorb 62.3 mg g–1 nickel ions from synthetic solutions, according to the Langmuir model. Desorption was effective and practical using 0.1 M CaCl2 (pH 2.5, HCl) and the biomass was regenerated and reused for three cycles. Continuous biosorption experiments were performed in an upflow packed column (2 cm I.D and 35 cm height). Among the two electroplating effluents used, effluent‐1 is characterized by excess co‐ions and high nickel ion content. This influenced the column nickel uptake with U. reticulata exhibiting 52.1 mg g–1 in the case of effluent‐1 compared to 56.5 mg g–1 in the case of synthetic solution. On the other hand U. reticulata performed well in effluent‐2 with uptakes of 53.3 and 54.3 mg g–1 for effluent‐2 and synthetic solution, respectively. Mathematical modeling of column experimental data was performed using nonlinear forms of the Thomas‐ and modified dose‐response models, with the latter able to simulate breakthrough curves with high correlation coefficients.  相似文献   
6.
Thirumanimuttar sub-basin is of particular importance in the study of groundwater quality due to the release of effluents from industries, agricultural, sewage and urban runoff, brining considerable change in water quality. An investigation was carried out by collecting a total of 194 groundwater samples for two seasons to decipher hydrogeochemistry and groundwater quality for determining its suitability for agricultural purposes. The water is neutral to alkaline in nature with pH ranging from 6.78 to 9.22 with an average of 7.37. Higher electrical conductivity (EC) was noted in NW and mid-downstream parts of the study area. Higher NO 3 ? was observed during post-monsoon (POM) due to the action of leaching and anthropogenic process. The piper plot reveals the dominance of Na+?CCl? and Na+?CHCO 3 ? , mixed Ca2+?CNa+?CHCO 3 ? , mixed Ca2+?CMg2+?CHCO 3 ? and Ca2+?CSO 4 ? types of hydrogeochemical facies. Higher total hardness in the groundwater is due to the effect of dyeing and bleaching industries discharging effluents affects the quality of water. Residual Sodium Carbonate value indicates 56% of the samples are not suitable for irrigation purposes in both seasons. Higher sodium percentage is noted during PRM indicating the dominance of ion exchange and weathering. Higher sodium adsorption ratio was observed during POM indicating the effect of leaching and dissolution of salts into the aquifer matrix. USSL plot indicates 15% of samples record high salinity to medium sodicity. The Permeability Index indicates water is moderate to good for irrigation purposes. In general, groundwater in the study area is influenced by both natural and anthropogenic activities.  相似文献   
7.
Aquifer contamination by organic chemicals in subsurface flow through soils due to leaking underground storage tanks filled with organic fluids is an important groundwater pollution problem. The problem involves transport of a chemical pollutant through soils via flow of three immiscible fluid phases: namely air, water and an organic fluid. In this paper, assuming the air phase is under constant atmospheric pressure, the flow field is described by two coupled equations for the water and the organic fluid flow taking interphase mass transfer into account. The transport equations for the contaminant in all the three phases are derived and assuming partition equilibrium coefficients, a single convective – dispersive mass transport equation is obtained. A finite element formulation corresponding to the coupled differential equations governing flow and mass transport in the three fluid phase porous medium system with constant air phase pressure is presented. Relevant constitutive relationships for fluid conductivities and saturations as function of fluid pressures lead to non-linear material coefficients in the formulation. A general time-integration scheme and iteration by a modified Picard method to handle the non-linear properties are used to solve the resulting finite element equations. Laboratory tests were conducted on a soil column initially saturated with water and displaced by p-cymene (a benzene-derivative hydrocarbon) under constant pressure. The same experimental procedure is simulated by the finite element programme to observe the numerical model behaviour and compare the results with those obtained in the tests. The numerical data agreed well with the observed outflow data, and thus validating the formulation. A hypothetical field case involving leakage of organic fluid in a buried underground storage tank and the subsequent transport of an organic compound (benzene) is analysed and the nature of the plume spread is discussed.  相似文献   
8.
An eco‐friendly and inexpensive technique for wastewater treatment originated from inductively coupled plasma‐optical emission spectrometry (ICP‐OES) is presented within this paper. The proposed process comprised of loading waste crab shells in packed column for adsorption of heavy metal ions, followed by desorption using 0.01 M HCl. An exhaustive physical and chemical characterization of ICP‐OES wastewater revealed the complex nature of effluent, including the presence of 15 different metals and metalloid under strong acidic condition (pH 1.3). Based on the preliminary batch experiments, it was identified that solution pH played a major role in metal sequestration by crab shell with pH 3.5 identified as optimum pH. Rapid metal biosorption kinetics along with complete desorption and subsequent reuse for three cycles was possible with crab shell‐based treatment process. Continuous flow‐through column experiments confirmed the high performance of crab shell towards multiple metal ions with the column able to operate for 22 h at a flow rate of 10 mL/min before outlet concentration of arsenic reached 0.25 times of its inlet concentration. Other metal ions such as Cu, Cd, Co, Cr, Pb, Ni, Zn, Mn, Al, and Fe were only in trace levels in the treated water until 22 h. The performance of the treatment process was compared with trade effluent discharge standards, and the process flow diagram along with cost analysis was suggested.  相似文献   
9.
Biodegradation of naphthalene by Micrococcus sp., isolated from the effluent of an activated sludge plant, was studied. The effects of pH (5–8), glucose concentration (100–1000 mg/L) and inoculum concentrations (1–5%) on the growth and naphthalene degradation potential of Micrococcus sp. were investigated. Maximum naphthalene degradation and subsequent high microbial growth were observed at optimum pH (pH 7), glucose concentration (500 mg/L) and inoculum concentration (3%). To investigate the maximum naphthalene tolerance potential of Micrococcus sp., very high concentrations of naphthalene (500–5000 mg/L) were used in the presence of non‐ionic surfactants. The examined surfactants (Triton X‐100 and Tween‐80) increased the bioavailability of naphthalene to the microbes and Complete naphthalene degradation by Micrococcus sp. was observed at an initial naphthalene concentration of 500 mg/L. However, the degradation potential decreases as the naphthalene concentration increases. Very high naphthalene concentrations also affected the growth of microbes and the corresponding substrate inhibition kinetics was described using four models (Haldane, Webb, Edward and Aiba). Based on correlation coefficient and percentage error values, all four substrate kinetic models were able to describe the dynamic behavior of naphthalene biodegradation by Micrococcus sp.  相似文献   
10.
A hydrogeochemical investigation was conducted in a coastal region of Cuddalore district to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. The geology of the study area comprises of sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 18 groundwater samples were analyzed for 14 different water quality parameters and the result indicates higher concentrations of ions like Cl (3,509 mg/l), Na (3,123 mg/l), and HCO3 (998 mg/l) when compared with WHO, BIS, and ISI standards. A positive correlation (r 2?=?0.82) was observed between Na and Cl, indicating its sources from salt water intrusion. Three factors were extracted with a total variance of 64% which indicates the sources of salinization, cation exchange, and anthropogenic impact to the groundwater. The Piper trilinear diagram indicates both Na–Cl and mixed Na–HCO3–Cl-type, indicating that groundwater was strongly affected by anthropogenic activities. The plot of (Ca?+?Mg)/(K?+?Na) indicates evidences of cation exchange and salt water intrusion. The (Ca–0.33*HCO3)/ SO4 plot indicates salt water intrusion for elevated SO4 levels rather than gypsum dissolution. The spatial distribution of total dissolved solid indicates the saline water encroachment along the SW part of the study area. As per sodium adsorption ratio (SAR), 50% of the samples with <10 SAR are suitable for irrigation and >10 SAR indicates that water is unsuitable for irrigation purposes. The residual sodium carbonate classification indicates that 50% of the samples fall in safe and 50% of the samples fall in bad zones and prolonged usage of this water will affect the crop yield. The Chloro Alkaline Index of water indicates disequilibrium due to a higher ratio of Cl?>?Na–K, indicating the influence of salt water intrusion. The Permeability Index of the groundwater indicates that the groundwater from the study area is moderate to good for irrigation purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号