首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
地球物理   1篇
天文学   29篇
  2020年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  1994年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   4篇
  1975年   1篇
排序方式: 共有30条查询结果,搜索用时 109 毫秒
1.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   
2.
3.
Mars was observed near the peak of the strongest SO2 band at 1364-1373 cm−1 with resolving power of 77,000 using the Texas Echelon Cross Echelle Spectrograph on the NASA Infrared Telescope Facility. The observation covered the Tharsis volcano region which may be preferable to search for SO2. The spectrum shows absorption lines of three CO2 isotopomers and three H2O isotopomers. The water vapor abundance derived from the HDO lines assuming D/H = 5.5 times the terrestrial value is 12±1.0 pr. μm, in agreement with the simultaneous MGS/TES observations of 14 pr. μm at the latitudes (50° S to 10° N) of our observation. Summing of spectral intervals at the expected positions of sixteen SO2 lines puts a 2σ upper limit on SO2 of 1 ppb. SO2 may be emitted into the martian atmosphere by seepage and is removed by three-body reactions with OH and O. The SO2 lifetime, 2 years, is longer than the global mixing time 0.5 year, so SO2 should be rather uniformly distributed across Mars. Seepage of SO2 is less than 15,000 tons per year on Mars which is smaller than the volcanic production of SO2 on the Earth by a factor of 700. Because CH4/SO2 is typically 10−4-10−3 in volcanic gases on the Earth, our results show seepage is unlikely to be the source of the recently discovered methane on Mars and therefore strengthen its biogenic origin.  相似文献   
4.
Four surveys in which the geometrical parameters were suitable for observations on weak scattering objects were carried out by the Venera 9, 10 orbiters using 3000–8000 Å spectrometers. The results of one survey can be explained by a dust layer at the height of sighting h = 100–700 km. Its absence in other sessions suggests a ring structure. The spectrum of dust scattering is a power function of the wavelength with the index varying from ?2.1 at 100km to ?1.3 at 500km. A method is proposed for obtaining the optical thickness, density and size distribution of dust particles from the scattering spectra. For m > 10?14 g the number of dust particles with a mass higher than m is proportional to m?1.3. The radial optical thickness τ is 0.7 × 10?5 at 5000 Å assuming the geometric thickness δ to be 100 km. The maximum optical thickness along the normal to the plane of the ring is τn = 4 × 10?6. The mass of the ring is 20 tons or 5 × 10?3 g cm?1 per unit circumference length; the maximum mass in a column normal to the ring plane is 10?10g cm?2; the maximum density (for δ = 100 km) is 10?17 g cm?3. A satellite of Venus gradually destroyed by temperature effects and by meteorite streams and plasma fluxes is suggested as the source of dust in the ring. One of 1 km radius could sustain such a ring for a billion years. The zodiacal light intensity near Venus is estimated.  相似文献   
5.
Bar-Nun and Dimitrov [Bar-Nun, A., Dimitrov, V., 2006. Icarus 181, 320-322] suggested a sequence of reactions to form methane on Mars. These reactions are based on the study of products in the N2-CO-H2O mixture irradiated at 185 nm. The suggested scheme was not quantitatively justified by chemical kinetics. One of the key reactions is effectively blocked by O2 in the martian atmosphere, and another key reaction does not exist. There are no pathways for effective formation of methane in the martian atmosphere.  相似文献   
6.
Venera 9, 10 measurements of the nightside ionospheric profile and the night airglow were used for investigating ionosphere formation processes. The upper ionospheric layer may be formed by HeI 584 Å radiation; the lower layer by meteorite ionization. Upper limits on the electron energy flux, <4 × 108eV cm−2 s−1, the helium ion flux <107 cm−2 s−1, the nitric oxide mixing ratio, <1.5 × 10−4 and the atomic sulphur mixing ratio, <10−6, are deduced for ionospheric altitudes.  相似文献   
7.
A scheme of excitation, quenching, and energy transfer processes in the oxygen nightglow on the Earth, Venus, and Mars has been developed based on the observed nightglow intensities and vertical profiles, measured reaction rate coefficients, and photochemical models of the nighttime atmospheres of the Venus and Mars. The scheme involves improved radiative lifetimes of some band systems, calculated yields of the seven electronic states of O2 in termolecular association, and rate coefficients of seven processes of electronic quenching of the Herzberg states of O2, which are evaluated by fitting to the nightglow observations. Electronic quenching of the vibrationally excited Herzberg states by O2 and N2 in the Earth's nightglow is a quarter of total collisional removal of the O2(A, A′) states and a dominant branch for the O2(c) state. The scheme supports the conclusion by Steadman and Thrush (1994) that the green line is excited by energy transfer from the O2(A3Σu+, v≥6) molecules, and the inferred rate coefficient of this transfer is 1.5×10−11 cm3 s−1. The O2 bands at 762 nm and 1.27 μm are excited directly, by quenching of the Herzberg states, and by energy transfer from the O2(5Πg) state. Quenching of the O2 band at 762 nm excites the band at 1.27 μm as well. Effective yield of the O2(a1Δg) state in termolecular association on Venus and Mars is ∼0.7. Quantitative assessments of all these processes have been made. A possible reaction of O2(c1Σu)+CO is a very minor branch of recombination of CO2 on Venus and Mars. Night airglow on Mars is calculated for typical conditions of the nighttime atmosphere. The calculated vertical intensity of the O2 band at 1.27 μm is 13 kR, far below the recently reported detections.  相似文献   
8.
Altitude dependences of [CO2] and [CO2+] are deduced from Mariner 6 and 7 CO2+ airglow measurements. CO2 densities are also obtained from ne radio occultation measurements. Both [CO2] profiles are similar and correspond to the model atmosphere of Barth et al. (1972) at 120 km, but at higher altitudes they diverge and at 200–220 km the obtained [CO2] values are three times less the model. Both the airglow and radio occultation observations show that a correction factor of 2.5 should be included into the values for solar ionization flux given by Hinteregger (1970). The ratio of [CO2+]/ne is 0.15–0.2 and, hence, [O]/[CO2] is ~3% at 135 km. An atmospheric and ionospheric model is developed for 120–220 km. The calculated temperature profile is characterized by a value of T ≈ 370°K at h ? 220 km, a steep gradient (~2°/km) at 200-160 km, a bend in the profile at 160 km, a small gradient (~0.7°/km) below and a value of T ≈ 250°K at 120 km. The upper point agrees well with the results of the Lyman-α measurements; the steep gradient may be explained by molecular viscosity dissipation of gravity and acoustical waves (the corresponding energy flux is 4 × 10?2 erg cm?2sec?1 at 180 km). The bend at 160 km may be caused by a sharp decrease of the eddy diffusion coefficient and defines K ≈ 2 × 108cm2sec?1; and the low gradient gives an estimate of the efficiency of the atmosphere heating by the solar radiation as ? ≈ 0.1.  相似文献   
9.
108 +/- 11 photons of the martian He 584-angstroms airglow detected by the Extreme Ultraviolet Explorer satellite during a 2-day exposure (January 22-23, 1993) correspond to the effective disk average intensity of 43 +/- 10 Rayleigh. Radiative transfer calculations, using a model atmosphere appropriate to the conditions of the observation and having an exospheric temperature of 210 +/- 20 K, result in a He mixing ratio of 1.1 +/- 0.4 ppm in the lower atmosphere. Nonthermal escape of helium is due to electron impact ionization and pickup of He+ by the solar wind, to collisions with hot oxygen atoms, and to charge exchange with molecular species with corresponding column loss rates of 1.4 x 10(5), 3 x 10(4), and 7 x 10(3) cm-2 sec-1, respectively. The lifetime of helium on Mars is 5 x 10(4) years. The He outgassing rate, coupled with the 40Ar atmospheric abundance and with the K:U:Th ratio measured in the surface rocks, is used as input to a single two-reservoir degassing model which is applied to Mars and then to Venus. A similar model with known abundances of K, U, and Th is applied to Earth. The models for Earth and Mars presume loss of all argon accumulated in the atmospheres during the first billion years by large-scale meteorite and planetesimal impacts. The models show that the degassing coefficients for all three planets may be approximated by function delta = delta (0)(t(0)/t)1/2 with delta (0) = 0/1, 0.04, and 0.0125 Byr-1 for Earth, Venus, and Mars, respectively. After a R2 correction this means that outgassing processes on Venus and Mars are weaker than on Earth by factors of 3 and 30, respectively. Mass ratios of U and Th are almost the same for all three planets, while potassium is depleted by a factor of 2 in Venus and Mars. Mass ratios of helium and argon are close to 5 x 10(-9) and 2 x 10(-8) g/g in the interiors of all three planets. The implications of these results are discussed.  相似文献   
10.
Long-term spectroscopic observations of the O2 dayglow at 1.27 μm result in a map of the latitudinal and seasonal behavior of the dayglow intensity for the full martian year. The O2 dayglow is a sensitive tracer of Mars' photochemistry, and this map reflects variations of Mars' photochemistry at low and middle latitudes. It may be used to test photochemical models. Long-term observations of the CO mixing ratio have been also combined into the seasonal-latitudinal map. Seasonal and latitudinal variations of the mixing ratios of CO and the other incondensable gases (N2, Ar, O2, and H2) discovered in our previous work are caused by condensation and sublimation of CO2 to and from the polar regions. They reflect dynamics of the atmosphere and polar processes. The observed map may be used to test global circulation models of the martian atmosphere. The observed global abundances of CO are in reasonable agreement with the predicted variations with the 11-year solar cycle. Despite the perfect observing conditions, methane has not been detected using the IRTF/CSHELL with a 3σ upper limit of 14 ppb. This upper limit does not rule out the value of 10 ppb observed using the Canada-France-Hawaii Telescope and the Mars Express Planetary Fourier Spectrometer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号