首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
地球物理   56篇
海洋学   1篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2000年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
We analyse long-lasting (several hours) Pc1 pearl pulsations with decreasing, increasing or constant central frequencies. We show that nonstationary pearl events (those with either decreasing or increasing central frequency) are observed simultaneously with increasing auroral magnetic activity at the nightside magnetosphere while the stationary events (constant central frequency) correspond to quiet magnetic conditions. Events with decreasing central frequency are observed mostly in the late morning and daytime whereas events with increasing central frequency appear either early in the morning or in the afternoon. We explain the diurnal distribution of the nonstationary pearl pulsations in terms of proton drifts depending on magnetic activity, and evaluate the magnetospheric electric field based on the variation of the central frequency of pearl pulsations.  相似文献   
2.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   
3.
The data of continuous observations of ELF emissions (polar chorus) at South Pole Antarctic observatory (Φ = ?74.02°) for 1997–1999 and during the superstrong magnetic storms of October and November 2003 are analyzed. It has been established that an increase in polar chorus is as a rule observed during the initial and recovery phases of a magnetic storm at positive values of the IMF vertical component (IMF B z > 0). Under such conditions, South Pole is located in the region of closed field lines. It has been found that the generation of polar chorus at South Pole abruptly ceases during the storm main phase after the IMF B z southward turning and beginning of an intense substorm in the nightside auroral zone, probably, because this observatory appears in the region of projection of the open magnetosphere due to the expansion of the polar cap.  相似文献   
4.
Geomagnetism and Aeronomy - The features of the geomagnetic effect of the approach of an interplanetary magnetic cloud to the Earth’s magnetosphere during the recovery phase of a strong...  相似文献   
5.
This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29–30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.  相似文献   
6.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   
7.
The effects of morning magnetospheric substorms in the variations in near-Earth atmospheric electricity according to the observations of the electric field vertical component (E z ), at Hornsund polar observatory (Spitsbergen). The E z, data, obtained under the conditions of fair weather (i.e., in the absence of a strong wind, precipitation, and fog), are analyzed. An analysis of the observations indicated that the development of a magnetospheric substorm in the Earth’s morning sector is as a rule accompanied by positive deviations in E z, independently of the Hornsund location: in the polar cap or at its boundary. In all considered events, Hornsund was located near the center of the morning convection vortex. In the evening sector, when Hornsund fell in the region of evening convection vortex, the development of a geomagnetic substorm was accompanied by negative deviations in E z., It has been concluded that the variations in the atmospheric electric field E z), at polar latitudes, observed during the development of magnetospheric substorms, result from the penetration of electric fields of polar ionospheric convection (which are intensified during a substorm) to the Earth’s surface.  相似文献   
8.
This paper studies time variations in the near-ground atmospheric electric field (Ez) at the geomagnetic latitude of 74° (Hornsund observatory) during polar substorms. Ez variations are compared with those in the potential drop across the polar cap (Up), according to SuperDARN radar observations. It is found that in the morning sector, time variations in Ez are strongly driven by time variations in the electrojet and almost do not depend on time variations in Up, which is presumably due to the penetration of the electric field of the electrojet into tropospheric altitudes.  相似文献   
9.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   
10.
A thorough investigation of short-period oscillations in the Earth’s magnetic field as a fundamental natural process of the magnetospheric plasma began in Russia after V.A. Troitskaya established two oscillatory regimes in the geomagnetic field, namely, the regimes of continuous (Pc) and irregular pulsations (Pi). For studying these pulsations, 19 stations recording the telluric currents were installed during the International Geophysical Year (IGY, 1957–1959) on Troitskaya’s initiative. One of these stations was the Borok station. Subsequently, Borok has become the basic site for investigating geomagnetic pulsations and the main center for studying the short-period pulsations (SPPs) in the Earth’s magnetic field. This is the Borok scientific station where the key fundamental regularities of different types of geomagnetic pulsations were established. Troitskaya led and actively participated these works. Troitskaya organized and conducted the first complex geomagnetic observations in the world at the conjugate points Sogra (Arkhangelsk region, Russia) and Kerguelen (Indian Ocean). These studies were initially tested at the Borok observatory, where it was established that the wave packets of Pc1 geomagnetic pulsations are alternately observed in the northern and southern hemispheres in contrast to the other pulsation types which simultaneously occur in both hemispheres. The studies carried out at Borok promoted the establishment of a new direction in geophysics—diagnostics of the state of the magnetosphere based on the ground observations of geomagnetic pulsations. The analysis of simultaneous observations of the geomagnetic pulsations at polar latitudes of the Arctic and Antarctic was also for the first time conducted at the Borok observatory. This analysis revealed the main characteristics of wave phenomena at the geomagnetic poles and in the vicinity of the projection of the dayside polar cusp. Thus, for the first time in the world, Troitskaya and her Borok colleagues established the key patterns of the oscillatory regimes in the geomagnetic field of the Earth. This laid the basis for the further experimental and theoretical investigations which have shown that SPPs play a leading role in the dynamics of the magnetospheric plasma. In this paper we also list of 60 of Troitskaya’s main publications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号