首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   2篇
  国内免费   1篇
测绘学   2篇
大气科学   5篇
地球物理   52篇
地质学   40篇
海洋学   47篇
天文学   19篇
综合类   1篇
自然地理   10篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2007年   5篇
  2006年   6篇
  2005年   8篇
  2004年   4篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   12篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有176条查询结果,搜索用时 31 毫秒
1.
H2O-undersaturated melting experiments of synthesized basalt (SiO2 = 50.7 wt.%, MgO = 8.3 wt.%, Mg# = 60) were conducted at fO2 corresponding to NNO+1 and NNO−1 to clarify the effects of pressure (2–7 kbar) and H2O on fractional crystallization in island arcs. H2O content was ranged from nominally anhydrous to 4.4 wt.%. Differentiation trends, namely the liquid lines of descent, change sensitively according to pressure-H2O relations. Tholeiitic differentiation trends are reproduced with H2O ≤ ∼2 wt.% in primary magma. With such quantities of H2O, fractional crystallization is controlled by olivine + plagioclase at 2 kbar. Increasing the pressure from 2 to ≥4 kbar induces early crystallization of orthopyroxene instead of olivine and therefore SiO2 enrichment in the residual melts is suppressed. Increasing H2O (≥ ∼2 wt.% in primary magma) stabilizes clinopyroxene relative to orthopyroxene and/or magnetite. Although the phase relations and proportions strongly depend on fO2 and H2O content, differentiation trends are always calc-alkaline.  相似文献   
2.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
We have investigated the three-dimensional Lagrangian motion of water particles related with tidal exchange between two basins with a constant depth connected through a narrow strait and the effects of density stratification on the exchange processes by tracking a number of the labeled particles. Tide-induced transient eddies (TITEs), which are similar to those in two-dimensional basin, are generated behind the headlands. Upwelling appears around the center of the eddy and sinking around the boundary. When the basins are filled with homogeneous water, a pair of vortices are produced in the vertical cross section of the strait due to bottom stress, with upwellings along the side walls of the strait and sinking in the center of the strait. These circulations form the horizontally convergent field in the cross-strait direction in the upper layers while the horizontal divergence takes place in the bottom layer. These vertical water-motions produce the three-dimensional distribution of velocity shear and phase lag of the tidal current around the strait, and the Lagrangian drifts of water particles become large. As a result, water exchange through the strait is greatly enhanced: The water exchange rate reaches 94.1% which is much larger than that obtained in the vertically integrated two-dimensional model. When the basins are stratified, the stable stratification suppresses the vertical motion so that a pair of vertical vortices are confined in the lower layers. This leads to a decrease in the exchange rate, down to 88.6%. Our numerical results show that the three-dimensional structure of tidal currents should be taken into account in tidal exchange through a narrow strait.  相似文献   
5.
It is important to estimate hard-to-observe parameters in the ocean interior from easy-to-observe parameters. This study therefore demostrates a reconstruction of observed temperature and salinity profiles of the sea east of Japan (30°≈40°N, 140°≈150°E). The reconstruction was done by estimating suboptimal state from several values of the observed profiles and/or sea surface dynamic height (SDH) calculated from the profiles. The estimation used a variational method with vertical coupled temperature-salinity empirical orthogonal function (EOF) modes. Profiles of temperature and salinity in the subtropical region are effectively reconstructed from in situ temperature profile data, or sea surface temperature (SST) and SDH. For example, the analyzed temperature field from SST and SDH has an accuracy to within 1°C in the subtropical region. Salinity in the sea north of Kuroshio, however, is difficult to estimate because of its complex variability which is less correlated with temperature than in the subtropical region. Sea surface salinity is useful to estimate the subsurface structure. We also show the possibility that the estimation is improved by considering nonlinearity in the equation calculating SDH from temperature and salinity analysis values in order to examine the misfit between analysis and observation. Analysis using TOPEX/POSEIDON altimetry data instead of SDH was also performed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
The author reviews his study on generation mechanism of a shallow sea front and its variabilities awarded the Okada Prize of the Oceanographical Society of Japan for 1991. A new physical model is proposed for frontogenesis (nonhydrostatic model) in a shallow sea such as the Kii Channel during winter. This model retains the vertical acceleration term in momentum equation to simulate properly phenomena of a large aspect-ratio in the frontal region, such as gravitational convection induced by surface cooling. Numerical experiments are carried out to examine the validity of the model by using vertically two-dimensional model basin. Gravitational convection induced in the frontal region strengthens the horizontal convergence to form a remarkable front comparable to the observed one and that this effect of convection surpasses that of a tenfold cooling rate in a usual model adopting the hydrostatic approximation. It is also found that sharpness of front largely depends on horizontal eddy viscosity (diffusivity). Water exchange process caused by fluctuations of front is examined by tracking numerous labeled particles. Gravitational convection also plays an important role in this process by producing a large Lagrangian drift in the frontal region.  相似文献   
7.
I present the derivation of the Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar), which is developed for adopting a non-diagonal background error covariance matrix in nonlinear variational analyses (i.e., analyses employing a non-quadratic cost function). POpULar is based on the idea of a linear preconditioned conjugate gradient method widely adopted in ocean data assimilation systems. POpULar uses the background error covariance matrix as a preconditioner without any decomposition of the matrix. This preconditioning accelerates the convergence. Moreover, the inverse of the matrix is not required. POpULar therefore allows us easily to handle the correlations among deviations of control variables (i.e., the variables which will be analyzed) from their background in nonlinear problems. In order to demonstrate the usefulness of POpULar, we illustrate two effects which are often neglected in studies of ocean data assimilation before. One is the effect of correlations among the deviations of control variables in an adjoint analysis. The other is the nonlinear effect of sea surface dynamic height calculation required when sea surface height observation is employed in a three-dimensional ocean analysis. As the results, these effects are not so small to neglect.  相似文献   
8.
A method to extract geostrophic current in the daily mean HF radar data in the Kuroshio upstream region is established by comparison with geostrophic velocity determined from the along-track altimetry data. The estimated Ekman current in the HF velocity is 1.2% (1.5%) and 48° (38°)-clockwise rotated with respect to the daily mean wind in (outside) the Kuroshio. Furthermore, additional temporal smoothing is found necessary to remove residual ageostrophic currents such as the inertial oscillation. After removal of the ageostrophic components, the HF geostrophic velocity agrees well with that from the altimetry data with rms difference 0.14 (0.12) m/s in (outside) the Kuroshio.  相似文献   
9.
Least-squares prediction using an empirically deduced local covariance function was performed to investigate the temporal change in the rates of vertical crustal movements in the Tohoku district, Japan. Levelling data covering an area of approximately 450 × 275 km2 observed between 1966 and 1995 were used and the results shown in the form of contour maps. Firstly we derived a covariance function of the rates of vertical crustal movement with a Gaussian form function. We used this function to estimate the spatial distribution of the rates of vertical crustal movements. By the present method, a steady tilt of the Tohoku district to the east, toward the Japan Trench and an areal uplift in the southwestern part were well reproduced. Moreover, a significant temporal change in vertical movement rates is clearly seen. Received: 15 July 1996   相似文献   
10.
The model for the 2000 dike intrusion event between Kozushima and Miyakejima volcano, Japan, was reinvestigated. After the sudden earthquake swarm in Miyakejima volcano, a dike intrusion of large volume was detected by the nationwide GPS network (Geonet). The displacements detected with GPS stations over an area with a radius of about 200 km shows a distribution that is consistent with the dike source being located near Miyakejima volcano.The dike was intruded northwestwards between Miyakejima and the neighboring Kozushima volcano. We searched for the parameters in the models that reproduce the regional displacements due to dike intrusion between Miyakejima and Kozushiima islands. We tested three models, (1) the model with a single dike, (2) the model with a dike and a point dislocation source which represents a creep dislocation source and (3) the model with a dike and a deflation source which represents a magma reservoir. Though all three models can match the horizontal displacements near the source area, model 1 fails to reproduce the regional displacements in the central part of Japan. Both models 2 and 3 can reproduce the regional displacement for horizontal components. Model 3 produces slightly better results than model 2 for vertical components. The balance in the volume budget for models 2 and 3 is also consistent with the observations. These results show that we cannot distinguish between the two models using only GPS observation. As there is no direct evidence for such a large creep or ductile source (corresponds to M7 or more) as proposed in model 2 and the active seismic region migrated back and forth within the linear swarm region, the model with a dike and a deep magma source is preferable. For the deflation point source, we obtained a deflation volume of 1.5 km3 at the depth of 20 km below the dike. An additional ~0.95 km3 of volume loss through caldera collapse and edifice deflation took place at Miyakejima. We conclude that the magma that intruded the dike came in part from below Miyakejima and in part from below the sea floor between Miyakejima and Kozushima, perhaps from reservoirs at the Moho.Editorial responsibility: S Nakada, T Druitt  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号