首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
大气科学   4篇
地球物理   8篇
地质学   8篇
海洋学   1篇
天文学   14篇
自然地理   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1986年   1篇
  1979年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts’ scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows:
(1)
LDP#1: Provide multiple experiences: varied field science activities will hone astronauts’ abilities to adapt to novel scientific opportunities
(2)
LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery
(3)
LDP#3: Provide a relevant experience—the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning
(4)
LDP#4: Provide a social learning experience—the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts’ abilities to think and perform like a field scientist.
The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.  相似文献   
2.
3.
We perform and present a wavelet analysis on all 31 Cassini electron density profiles published to date (Nagy, A.F. et al. [2006]. J. Geophys. Res. 111 (A6), CiteID A06310; Kliore, A.J. et al. [2009]. J. Geophys. Res. 114 (A4), CiteID A04315). We detect several discrete scales of variability present in the observations. Small-scale variability (S < 700 km) is observed in almost all data sets at different latitudes, both at dawn and dusk conditions. The most typical scale of variability is 300 km with scales between 200 km and 450 km being commonly present in the vast majority of the profiles. A low latitude dawn/dusk asymmetry is noted in the prevalent scales with the spectrum peaking sharply at the 300 km scale at dusk conditions and being broader at dawn conditions. Compared to dawn conditions the dusk ionosphere also shows more significant variability at the 100 km scale. The 300 km vertical scale is also present in the few available profiles from the northern hemisphere. Early observations from 2005 show a dominant scale at 350 km whereas later in 2007–2008 the spectrum shifts to the shorter scales with the most prominent scale being 300 km. The performed wavelet analysis and the obtained results are independent of assumptions about the nature of the layers and do not require a definition for a “background” electron density profile.In the second part of the paper we present a gravity wave propagation/dissipation model for Saturn’s upper atmosphere and compare the wave properties to the characteristics of the observed electron density variability at different scales. The general features observed in the data are consistent with gravity waves being present in the lower ionosphere and causing layering of the ions and the electrons. The wave-driving mechanism provides a simultaneous explanation for several of the properties of the observed variability: (i) lack of variability in the electron density above the predicted region of wave dissipation; (ii) in most cases the peak amplitude of variability occurs within the altitude range for dissipation of gravity waves or below; (iii) shorter scales have smaller amplitudes than the longer scales; (iv) shorter scales are present at lower altitudes whereas longer scales persist to higher altitudes; and (v) several layers often form a system of equally spaced maxima and minima that can be traced over a large altitude range.  相似文献   
4.
Moored fish aggregating devices (MFADs) are used by small-scale fishers to access fish species difficult to harvest in large numbers. In the case of Guadeloupe (Caribbean area), the use of MFADs has increased considerably and this is causing congestion in these fishing areas and creating conflict between fishers. The aim of this article is to understand how informal fishing territories around the La Desirade Island were established and examine these territories through the lens of economic defendability theory. Results of semistructured interviews show that MFAD fishers display territoriality along MFAD tract lines forming quasi-privatized areas. Territoriality in this article is based on the following factors: the type of targeted resources, the cost of harvesting, the defending of territories, and the acknowledgment of territories by the fishing community. Conflicts and utilization of MFADs (overcapacity) have raised an opportunity to create co-managed legalized territorial use rights for fisheries.  相似文献   
5.
Numerous large landslide deposits occur in the Tien Shan, a tectonically active intraplate orogen in Central Asia. Yet their significance in Quaternary landscape evolution and natural hazard assessment remains unresolved due to the lack of "absolute" age constraints. Here we present the first 10Be exposure ages for three prominent (> 107 m3) bedrock landslides that blocked major rivers and formed lakes, two of which subsequently breached, in the northern Kyrgyz Tien Shan. Three 10Be ages reveal that one landslide in the Alamyedin River occurred at 11–15 ka, which is consistent with two 14C ages of gastropod shells from reworked loess capping the landslide. One large landslide in Aksu River is among the oldest documented in semi-arid continental interiors, with a 10Be age of 63–67 ka. The Ukok River landslide deposit(s) yielded variable 10Be ages, which may result from multiple landslides, and inheritance of 10Be. Two 10Be ages of 8.2 and 5.9 ka suggest that one major landslide occurred in the early to mid-Holocene, followed by at least one other event between 1.5 and 0.4 ka. Judging from the regional glacial chronology, all three landslides have occurred between major regional glacial advances. Whereas Alamyedin and Ukok can be considered as postglacial in this context, Aksu is of interglacial age. None of the landslide deposits show traces of glacial erosion, hence their locations and 10Be ages mark maximum extents and minimum ages of glacial advances, respectively. Using toe-to-headwall altitude ratios of 0.4–0.5, we reconstruct minimum equilibrium-line altitudes that exceed previous estimates by as much as 400 m along the moister northern fringe of the Tien Shan. Our data show that deposits from large landslides can provide valuable spatio-temporal constraints for glacial advances in landscapes where moraines and glacial deposits have low preservation potential.  相似文献   
6.
A synthesis of pollen evidence from Etang du Pourra, a small pond in Rhodanian Provence, France, complemented by new sedimentological, mineralogical and palynological data allow a reassessment of the Lateglacial-Holocene vegetation and climatic history of the area. The Etang du Pourra succession is shown to consist of two parts; the lower part dates from the Lateglacial and the upper reveals the Holocene pollen-stratigraphic succession typical of the region. In the Lateglacial, a humid and cooler phase is recorded before the Younger Dryas conditions progressively set in. In the Holocene succession, the consequences of human modifications on the environment are clearly visible in changes in mineralogy and pollen stratigraphy.  相似文献   
7.
8.
General circulation model experiments with surface albedo changes   总被引:1,自引:0,他引:1  
K. Laval 《Climatic change》1986,9(1-2):91-102
In 1975, Charney proposed a biogeophysical feedback mechanism to partly explain the droughts that occur in desert border areas. He showed that a perturbation of albedo (due to a natural or anthropogenic decrease of vegetation) can be unstable and lead to a variation of precipitation in the region where albedo is changed.Several numerical experiments have been achieved with general circulation models to study the sensitivity of climate to surface albedo. We compare the GLAS and LMD model results for the Sahel. For all models, rainfall decreases when albedo increases and net radiative heating of soil decreases. We show the variations of circulation simulated by the LMD model that we obtain when albedo is increased. These changes are compared to the weakening of Easterly Jet at 200 mb observed during dry years.  相似文献   
9.
Large-scale runoff routing models (RRMs) are important as a validation tool for GCMs, and to close the hydrological cycle in fully-coupled climate models. The model RiTHM was developed to simulate the discharge of large rivers from the total runoff simulated by the LMD GCM. It uses a 1024×800 grid, nested in the 64×50 grid of the LMD GCM. The runoff simulated in a GCM grid cell is uniformly distributed over the underlying cells, where a series of two reservoirs accounts for the delay related to infiltration through the unsaturated zone and aquifers. The resulting riverflow is routed assuming pure translation along the drainage network, extracted with a GIS from a 5 min DEM. The transfer time from a cell to the outlet depends on topography, and on a basin-wide parameter, the time of concentration. RiTHM was calibrated in 11 river basins, using a realistic runoff forcing (computed by the land surface model SECHIBA from reanalyzed meteorological forcing). This led to a very satisfactory reproduction of observed hydrographs. The main problems were related to hydraulic processes neglected in RiTHM (reservoirs, diversion of riverflow because of flooding or irrigation). These results helped to validate SECHIBA, except for its snow processes, shown to be too simple. With the same parameters, RiTHM was also forced with runoff from the LMD GCM. This induced an important degradation of the simulated hydrographs, regarding both volume and timing. It was largely explained by errors in precipitation, and more generally climate, in the GCM. The direct calibration of RiTHM under the GCM-runoff forcing markedly improved the timing of simulated discharge, which could be interesting for land–atmosphere–ocean coupling. This work demonstrated that the usefulness of RRMs for GCMs strongly depends on their adequate calibration.  相似文献   
10.
Studia Geophysica et Geodaetica - Ground and space-based geomagnetic data were used in the investigation of the longitudinal, seasonal and lunar phase dependence of the equatorial counter...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号