首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地球物理   15篇
地质学   4篇
自然地理   5篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
On the basis of growing evidence thatstrong earthquakes are preceded by a periodof accelerating seismicity of moderatemagnitude earthquakes, an attempt is madeto search for such seismicity pattern in NWAegean area. Accelerating seismic crustaldeformation has been identified in the areaof southern Albanides mountain range(border region between Greece, formerYugoslavia and Albania). Based on certainproperties of this activity and on itssimilarity with accelerating seismicdeformation observed before a strongearthquake which occurred in the sameregion on 26 May 1960 (M = 6.5), we canconclude that a similar earthquake may begenerated in the same region during thenext few years. This conclusion is inagreement with independent results whichhave been derived on the basis of the timepredictable model.  相似文献   
2.
3.
4.
The Pn travel time relative residuals, in respect to a crustal model of the Aegean area, have been determined for 103 permanent seismological stations in southeastern Europe, western Turkey and the Middle East. The values of these residuals are considered to depend mainly on the crustal thickness beneath the seismological stations. Based on these values seven regions with different crustal thickness, varying between 31 Km and 42 Km, have been defined. The crust in these regions is continental. A region with very high negative residuals has been defined in the Middle East (Egypt, Israel, Lebanon). These negative residuals are attributed to different crustal structure of the eastern Mediterranean (oceanic crust with an extra thick sedimentary layer) and not the crustal thickness at the station sites.Independently from the interpretation, these Pn residuals can be used successfully to considerably improve (up to 2 Km) the determination of the earthquake foci locations.  相似文献   
5.
—The seismicity in the territory of China, a seismotectonically complicated region, has been examined by using three complete samples of earthquakes which occurred during the last two centuries (1800–1995). The b value of the Gutenberg-Richter relation was estimated by using this data sample. Taking into account the fact that the b value is spatially more stable than the a value, the b values were calculated at the nodes of a normal grid superposing on the entire area studied, and their distribution was examined. The results showed that the b value increases smoothly from 0.4 in inner-Mongolia to 0.8 in the east, south and southwest of China with higher values (b>0.8) in the Taiwan region. Furthermore, keeping fixed the obtained b values, the a value distribution was also examined. In order to display more detailed information about the seismicity, smaller cell surface (10,000 km2) for the calculation of the a values was chosen. The mean return periods for different cutoff magnitudes were also calculated for each of these small cells. It was observed that the mean return periods are the shortest ones in China, which are 10 and 50 years for the magnitude larger than or equal to 6.0 and 7.0, respectively.  相似文献   
6.
Investigation of the time-dependent seismicity in 274 seismogenic regions of the entire continental fracture system indicates that strong shallow earthquakes in each region exhibit short as well as intermediate term time clustering (duration extending to several years) which follow a power-law time distribution. Mainshocks, however (interevent times of the order of decades), show a quasiperiodic behaviour and follow the ‘regional time and magnitude predictable seismicity model’. This model is expressed by the following formulas $$\begin{gathered} \log T_t = 0.19 M_{\min } + 0.33 M_p - 0.39 \log m_0 + q \hfill \\ M_f = 0.73 M_{\min } - 0.28 M_p + 0.40 \log m_0 + m \hfill \\ \end{gathered} $$ which relate the interevent time,T t (in years), and the surface wave magnitude,M f , of the following mainshock: with the magnitude,M min, of the smallest mainshock considered, the magnitude,M p , of the preceded mainshock and the moment rate,m 0 (in dyn.cm.yr?1), in a seismogenic region. The values of the parametersq andm vary from area to area. The basic properties of this model are described and problems related to its physical significance are discussed. The first of these relations, in combination with the hypothesis that the ratioT/T t , whereT is the observed interevent time, follows a lognormal distribution, has been used to calculate the probability for the occurrence of the next very large mainshock (M s ≥7.0) during the decade 1993–2002 in each of the 141 seismogenic regions in which the circum-Pacific convergent belt has been separated. The second of these relations has been used to estimate the magnitude of the expected mainshock in each of the regions.  相似文献   
7.
Accurate locations of aftershocks of the January 17, 1983 (M s=7.0) main shock in the Ionian islands have been determined, as well as fault plane solutions for this main shock and its largest aftershock, which are interpreted as a right-lateral, strike-slip motion with a thrust component, on a fault striking in about a NE-SW direction.This is considered as a transform fault in the northwesternmost part of the Hellenic arc.  相似文献   
8.
Repeat times of large shocks are obtained for 17 seismic fracture zones of the Aegean and surrounding area, from times of historic and present century earthquakes. The mean standard deviation of the repeat times is approximately 50% of any one observation.A probabilistic approach is then used to forecast the likelihood of large future earthquakes in each fracture zone, using as input the time of the last large shock, the average repeat time and its standard deviation. Shallow and intermediate depth earthquakes are examined separately. The calculated probabilities are high for the entire Hellenic arc, both for shallow and intermediate depth seismicity, for the area of Leucas island (Ionian), of Lesbos island (Aegean), for Patraikos-west Corinthiakos Gulfs, for Evoikos Gulf as well as for southern Bulgaria.The probability estimates based on the most recent large earthquakes, involve a number of basic physical assumptions and we would think that they provide a semi-stochastic approach to the problem of earthquake prediction in Greece.  相似文献   
9.
10.
We examined the seismic activity which preceded six strong mainshocks that occurred in the Aegean (M?=?6.4–6.9, 33–43° N, 19–28° E) and two strong mainshocks that occurred in California (M?=?6.5–7.1, 32–41° N, 115–125° W) during 1995–2010. We find that each of these eight mainshocks has been preceded by a pronounced decelerating and an equally easily identifiable accelerating seismic sequence with the time to the mainshock. The two preshock sequences of each mainshock occurred in separate space, time, and magnitude windows. In all eight cases, very low decelerating seismicity, as well as very low accelerating seismicity, is observed around the actual epicenter of the ensuing mainshock. Statistical tests on the observed measures of decelerating, q d, and accelerating, q a, seismicity against similar measures calculated using synthetic catalogs with spatiotemporal clustering based on the ETAS model show that there is an almost zero probability for each one of the two preshock sequences which preceded each of the eight mainshocks to be random. These results support the notion that every strong shallow mainshock is preceded by a decelerating and an accelerating seismic sequence with predictive properties for the ensuing mainshock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号