首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   19篇
  国内免费   3篇
测绘学   10篇
大气科学   42篇
地球物理   74篇
地质学   113篇
海洋学   22篇
天文学   53篇
自然地理   24篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   8篇
  2019年   12篇
  2018年   13篇
  2017年   14篇
  2016年   13篇
  2015年   14篇
  2014年   16篇
  2013年   27篇
  2012年   16篇
  2011年   38篇
  2010年   19篇
  2009年   31篇
  2008年   17篇
  2007年   18篇
  2006年   7篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
1.
We present an evaluation of the procedure by which model prediction bias is examined in palaeolimnological transfer function inference models. We argue that most of the prediction biases commonly reported in the literature are, in fact, fallacious, and are the artificial consequence of the inappropriate manner in which residuals are traditionally examined. We show that the extent of the specious model bias is entirely predictable from first principles and is essentially determined by the strength of the predictive model. We suggest that the analysis of residuals should always be examined as a function of the model's predictions and we discuss the implications of the old and new approaches.  相似文献   
2.
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.  相似文献   
3.
In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.  相似文献   
4.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   
5.
Finnish Lapland is known as an area where numerous sites with sediments from Pleistocene glacial and interglacial periods occur. Recent sedimentological observations and dating call for reinterpretation of the record, which shows a complicated Mid‐Weichselian ice‐sheet evolution within the ice‐divide zone. Here, a large, previously unstudied section from a former Hannukainen iron mine was investigated sedimentologically and dated with optically stimulated luminescence (OSL). Ten sedimentary units were identified displaying a variety of depositional environments (glacial, glaciolacustrine, fluvial and aeolian). They are all – except for the lowermost, deeply weathered till – interpreted to be of Mid‐ or Late Weichselian/Holocene age. Five OSL samples from fluvial sediments give ages ranging from 55 to 35 ka, indicating two MIS 3 ice‐free intervals of unknown duration. The Mid‐Weichselian interstadial was interrupted by a re‐advance event, which occurred later than 35 ka and caused glaciotectonic deformation, folding and stacking of older sediments. This new evidence emphasizes the importance of the Kolari area when unravelling the complex Late Pleistocene glacial history of northern Finland and adjacent regions.  相似文献   
6.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   
7.
8.
9.
10.
Touboul  Julien  Kharif  Christian 《Natural Hazards》2016,84(2):585-598
The kinematic and dynamic of steep two-dimensional focusing wave trains on a shearing flow in deep water are investigated analytically and numerically. In the absence of waves, the vorticity due to the vertical gradient of the horizontal current velocity is assumed constant. A linear kinematic model based on the spatio-temporal evolution of the frequency is derived, predicting the focusing distance and time of a chirped wave packet in the presence of constant vorticity. Furthermore, a linear model, based on a Fourier integral, is used to describe the evolution of the free surface on shearing current. To compute the fully nonlinear evolution of the wave group in the presence of vorticity, a new numerical model, based on a BIEM approach, is developed. On the basis of these different approaches, the role of constant vorticity on rogue wave occurrence is analysed. Two main results are obtained: (1) the linear behaviour expected in the presence of constant vorticity is significantly different from what is commonly expected in the presence of constant current and (2) the nonlinear effects are found to be of significant influence in the case at hand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号