首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
  国内免费   2篇
大气科学   7篇
地球物理   14篇
地质学   16篇
海洋学   5篇
天文学   7篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
  1985年   1篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1937年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
The importance of riparian tree cover in reducing energy inputs to streams is increasingly recognized in schemes to mitigate climate change effects and protect freshwater ecosystems. Assessing different riparian management strategies requires catchment‐scale understanding of how different planting scenarios would affect the stream energy balance, coupled with a quantitative assessment of spatial patterns of streamflow generation. Here, we use the physically based MIKE SHE model to integrate simulations of catchment‐scale run‐off generation and in‐stream hydraulics with a heat transfer model. This was calibrated to model the spatio‐temporal distribution of hourly stream water temperature during warm low flow periods in a Scottish salmon stream. The model was explored as a “proof of concept” for a tool to investigate the effects of riparian management on high stream water temperatures that could affect juvenile Atlantic salmon. Uncertainty was incorporated into the assessment using the generalized likelihood uncertainty estimation approach. Results showed that by decreasing both the warming (daylight hours) and the cooling (night‐time hours) rates, forest cover leads to a reduction of the temperature range (with a delay of the time to peak by up to 2 hr) and can therefore be effectively used to moderate projected climate change effects. The modelling presented here facilitated the quantification of potential mitigating effects of alternative riparian management strategies and provided a valuable tool that has potential to be utilized as an evidence base for catchment management guidance.  相似文献   
2.
Unlike many reactive continental shelf mud deposits in temperate regions, bacteria and microfauna rather than macrofauna typically dominate benthic biomass and activities over large areas of the Gulf of Papua (GoP) deltaic complex, Papua New Guinea. During mid NW monsoon periods (Jan–Feb), macrofaunal densities at Gulf stations were relatively low (), large macroinfauna were absent (upper 25 cm), and small (), surface deposit-feeding polychaetes and tubiculous amphipods were dominant, reflecting a frequently destabilized seabed and high sedimentation/erosion rates. Although frequent physical disturbance generally inhibits development of macrobenthic communities, some regions of the Gulf deposits are periodically colonized and extensively bioturbated during quiescent periods, as shown by preserved biogenic sedimentary structures. Bacterial inventories integrated over the top 20 cm were extremely variable within each sub region of the clinoform complex. A possible bimodal pattern with bathymetric depth and distance offshore may occur: lowest-inventories within the sandy, proximal Fly River delta, an open Gulf inner topset zone (10–20 m) having sites of relatively high inventories, an open Gulf mid-topset region with intermediate values and less extreme variation, and the outer topset—upper foreset zone (40–50 m) where highest values are attained (). Various measures of microbial activity, including measures proportional to the cellular rRNA content and the proportion of dividing cells, indicate extremely productive populations over the upper 1-m of the seabed throughout the Gulf of Papua region. Bacterial biomass (0–20 cm) including data of Alongi et al. (1991, 1992, 1995) varied from a low of in intertidal mud banks to a high of in the topset—foreset zone. Macrofaunal biomass did not exceed in any sampled region, ranging from 0.009±0 to with no obvious correlation with bathymetric depth (1–63 m). Meiofaunal biomass was generally an order of magnitude lower than macrofaunal biomass. Relatively elevated bacterial biomass and high turnover rates are consistent with high measured rates of benthic remineralization, presumably reflecting the rapid response time of bacteria to physical reworking, the associated entrainment of organic substrate, and flushing of metabolites. Solute exchange is also enhanced below the directly mixed surface region, possibly producing ‘far field’ stimulation of microbes in underlying deposits. Physical reworking and reoxidation of sediments between 10 and 50 m water depth maintain suboxic, nonsulfidic conditions in the upper 0.5–1 m despite active microbial communities and high benthic remineralization rates.  相似文献   
3.
Toxicity of tributyltin in the marine mollusc Mytilus edulis   总被引:1,自引:0,他引:1  
Our previous studies have demonstrated that tributyltin (TBT) is genotoxic to the early life stages of marine mussels and worms. Here, the toxicity of TBT to adult organisms was determined using a suite of biomarkers designed to detect cytotoxic, immunotoxic and genotoxic effects. Exposure of adult mussels, Mytilus edulis, to environmentally realistic concentrations of TBTO for 7 days resulted in a statistically significant decrease in cell viability at concentrations of 0.5 μg/l and above. TBT had no effect on phagocytic activity or antioxidant capacity (FRAP assay). There was a statistically significant increase in DNA damage detected using the comet and micronucleus assays between the controls and 0.5, 1 and 5 μg/l of TBTO (P > 0.0005). Furthermore there was a strong correlation between DNA strand breaks (comet assay) and formation of micronuclei (P = 0.0005; R2 = 61.5%). Possible mechanisms by which TBT could damage DNA either directly or indirectly are discussed including the possibility that TBT is genotoxic due to its ability to disrupt calcium homeostasis.  相似文献   
4.
K---Ar dates for muscovites and biotites in granitoid rocks and hydrothermal ore deposits of the northeastern parts of the plutons making up the Triassic Carabaya batholith, underlying the axial Cordillera Oriental of northern Puno Department, southeastern Peru, are markedly variable and mutually discordant. Steep transverse gradients are defined in the apparent ages of both micas, which decrease systematically from SW to NE, delimiting a ca. 25-km-wide, longitudinal zone of anomalously young Mesozoic to Paleocene dates. Age minima of 37±1 Ma are attained in three of the four studied transects. 40Ar/39Ar step-heating analyses of selected micas confirm the occurrence of a thermal disturbance, and modeling of the spectra suggests that argon loss in muscovites attains at least ca. 75% in the northeastern part of the zone. A single K-feldspar spectrum yielded a minimum at 31 Ma, and apatite fission-track age cluster at ca. 31 and 18.5 Ma. The affected granitoid rocks generally display little megascopic evidence of tectonism, but microscopic deformational fabrics increase in intensity with apparent decreasing K---Ar age, paralleling a marked increase in alkali feldspar ordering. Secondary fluid inclusions trapped within the microfabrics reveal that the plutonic rocks were penetrated by a homogeneous H2O---CO2---CH4---NaCl fluid at ca. 300–400°C and 0.7–2 kbar. This fluid is implicated in the degassing of the rocks. These diverse data are interpreted as evidence for a major, but moderate-temperature (400°C) and brief, tectono-thermal event at ca. 37±1 Ma (biotite closure temperature)—i.e., at the Eocene-Oligocene boundary. The K-feldspar 40Ar/39Ar data and the Oligocene fission-track dates may record the later stages in the event, whereas the Miocene fission-track dates are tentatively ascribed to a distinct Neogene episode. Essentially identical geochronological and petrological relationships have been documented in the Cordillera Real of northwestern Bolivia by McBride et al. (1987), permitting the delimination of a disturbed belt paralleling the South American plate boundary and more than 450 km long. The tectono-thermal domain, which we term the Zongo-San Gabán Zone, constituted the foreland boundary of the Andean orogen in the vicinity of the Arica Deflection during the late Eocene Incaic orogeny. This regional thermal event, which involved the basement, appears to have resulted from compressional or, in some segments, transpressional tectonics.  相似文献   
5.
The solubility of copper chloride in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 280 to 320°C and pressures up to 103 bars. Results of these experiments show that the solubility of copper in the vapor phase is significant and increases with increasing fH2O, but is retrograde with respect to temperature. This solubility is attributed to the formation of hydrated copper-chloride gas species, interpreted to have a copper-chlorine ratio of 1:1 (e.g., CuCl, Cu3Cl3, etc.) and a hydration number varying from 7.6 at 320°C, to 6.0 at 300°C, and 6.1 at 280°C. Complex formation is proposed to have occurred through the reaction:
A1  相似文献   
6.
Sedimentary S cycling is usually conceptualized and interpreted within the context of steadily accreting (1-D) transport-reaction regimes. Unsteady processes, however, are common in many sedimentary systems and can result in dramatically different S reaction balances and diagenetic products than steady conditions. Globally important common examples include tropical deltaic topset and inner shelf muds such as those extending from the Amazon River ∼1600 km along the Guianas coast of South America. These deposits are characterized by episodic reworking of the surface seabed over vertical depths of ∼0.1-3 m. Reworked surface sediments act as unsteady, suboxic batch reactors, unconformably overlying relict anoxic, often methanic deposits, and have diagenetic properties largely decoupled from net accumulation of sediment. Despite well-oxygenated water and an abundant reactive organic matter supply, physical disturbance inhibits macrofauna, and benthic communities are dominated by microbial biomass across immense areas. In the surficial suboxic layer, molecular biological analyses, tracer experiments, sediment C/S/Fe compositions, and δ34S, δ18O of pore water indicate close coupling of anaerobic C, S, and Fe cycles. δ18O- can increase by 2-3‰ during anaerobic recycling without net change in δ34S-, demonstrating reduction coupled to complete anaerobic reoxidation to and a δ18O- reduction + reoxidation fractionation factor?12‰ (summed magnitudes). S reoxidation must be coupled to Fe-oxide reduction, contributing to high dissolved Fe2+ (∼1 mM) and Fe mobilization-export. The reworking of Amazon-Guianas shelf muds alone may isotopically alter δ18O- equivalent in mass to?25% of the annual riverine delivery of to the global ocean. Unsteady conditions result in preservation of unusually heavy δ34S isotopic compositions of residual Cr reducible S, ranging from 0‰ to >30‰ in physically reworked deposits. In contrast, bioturbated facies adjacent to physically reworked regions accumulate isotopically light S (δ34S to −20‰) in otherwise similar decomposition regimes. The isotopic patterns of both physically and biologically reworked regions can be simulated with simple diagenetic models. Heavy S isotopic signatures are largely a consequence of unsteady diffusion and progressive anaerobic burndown into underlying deposits, whereas isotopically depleted bioturbated deposits predominantly reflect biogenic diffusive scaling and isotopic distillation/diffusive pumping associated with reoxidation in burrow walls immediately adjacent to reduced zones. The S isotopic transition from unsteady physically controlled regions of the Amazon delta moving laterally into bioturbated facies mimics the transition of S isotopic patterns temporally in the geologic record during the rise of bioturbation. No special role for S disproportionation is required to explain these differences. The potential role of unsteady, suboxic diagenesis and dynamic reworking of sediments has been largely ignored in models of the evolution of surficial elemental cycling and interpretations of the geologic record.  相似文献   
7.
Recent findings on the distribution of methylated mercury (MeHgT) in waters have highlighted the importance of organic carbon remineralization on the production of these compounds in the open ocean. Here, we present the first time-series (20 monthly samplings between July 2007 and May 2009) of high-resolution vertical profiles (10-12 depths in a 2350 m water column) of MeHgT distributions in an open ocean environment, the Ligurian Sea (North-western Mediterranean Sea). Concentrations varied within the sub-picomolar range (general mean: 0.30 ± 0.17 pmol L−1, n = 214) with the lowest values at the surface, increasing with depth up to the oxygen minimum zone, and decreasing slowly at greater depth. Concentrations in the surface waters never exceeded 0.15 pmol L−1, while the highest concentrations (up to 0.82 pmol L−1) were associated to the hypoxycline during the autumn bloom. A detailed vertical MeHgT profile reveals a “double-peak” pattern, coincidental with the two microbial layers described by Tanaka and Rassoulzadegan (2002), the so-called “microbial food web” in the euphotic zone (<100 m) and the “microbial loop” in the aphotic zone (>100 m). Temporal variations in the MeHgT abundance and distribution in the water column were linked to seasonality. The highest MeHgT concentrations were found in the oxygen minimum zone during the period of stratification, and coincide with the greatest abundance of nano- and picophytoplankton (cyanobacteria, nanoflagellates, etc.) in the euphotic layer. None of our deep MeHgT measurements (∼100 m above the sea bottom) revealed a significant sedimentary source of MeHgT. We explored the correlation between MeHgT concentrations and the apparent oxygen utilization, a proxy of organic matter remineralization, over the study period. Results of this study strengthen the hypothesis that net mercury methylation in the open ocean occurs in the water column, is linked to organic matter regeneration, and is promoted by the presence of small-sized nano- and picophytoplankton, that dominate under oligotrophic conditions.  相似文献   
8.
A submillimetre survey of the star formation history of radio galaxies   总被引:1,自引:0,他引:1  
We present the results of the first major systematic submillimetre survey of radio galaxies spanning the redshift range 1< z <5. The primary aim of this work is to elucidate the star formation history of this sub class of elliptical galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the JCMT, we have obtained 850-μm photometry of 47 radio galaxies to a consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The radio galaxy targets have been selected from a series of low-frequency radio surveys of increasing depth (3CRR, 6CE, etc.), in order to allow us to separate the effects of increasing redshift and increasing radio power on submillimetre luminosity. Although the dynamic range of our study is inevitably small, we find clear evidence that the typical submillimetre luminosity (and hence dust mass) of a powerful radio galaxy is a strongly increasing function of redshift; the detection rate rises from ≃15 per cent at z <2.5 to ≳75 per cent at z >2.5, and the average submillimetre luminosity rises at a rate ∝(1+ z )3 out to z ≃4. Moreover, our extensive sample allows us to argue that this behaviour is not driven by underlying correlations with other radio galaxy properties such as radio power, radio spectral index, or radio source size/age. Although radio selection may introduce other more subtle biases, the redshift distribution of our detected objects is in fact consistent with the most recent estimates of the redshift distribution of comparably bright submillimetre sources discovered in blank field surveys. The evolution of submillimetre luminosity found here for radio galaxies may thus be representative of massive ellipticals in general.  相似文献   
9.
10.
Biogenic silica contents of sediments on the lower Selenga Delta and Buguldeika saddle in Lake Baikal show distinct fluctuations that reflect changes in diatom productivity, and ultimately, climate. The pattern of the upper 50 m of the section, dating from about 334 ka, is similar to that of the marine oxygen-isotope record, increasingly so as the younger sediments become progressively finer grained and less locally derived with time. The last two interglaciations are marked by biogenic silica abundances similar to those of the Holocene. The equivalent of marine oxygen-isotope stage 3 is distinctly intermediate in character between full glacial and full interglacial biogenic silica values. Following near-zero values during the last glacial maximum, biogenic silica began to increase at about 13 ka. The rise in biogenic silica to Holocene values was interrupted by an abrupt decrease during Younger Dryas time, about 11 to 10 14C ka.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号