首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   18篇
  国内免费   14篇
测绘学   18篇
大气科学   51篇
地球物理   164篇
地质学   160篇
海洋学   153篇
天文学   14篇
综合类   10篇
自然地理   14篇
  2022年   6篇
  2021年   7篇
  2020年   11篇
  2019年   19篇
  2018年   32篇
  2017年   27篇
  2016年   45篇
  2015年   21篇
  2014年   28篇
  2013年   47篇
  2012年   33篇
  2011年   34篇
  2010年   36篇
  2009年   24篇
  2008年   29篇
  2007年   25篇
  2006年   19篇
  2005年   33篇
  2004年   14篇
  2003年   16篇
  2002年   12篇
  2001年   8篇
  2000年   7篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1958年   1篇
  1955年   1篇
  1951年   4篇
  1950年   1篇
  1949年   2篇
  1948年   3篇
排序方式: 共有584条查询结果,搜索用时 15 毫秒
1.
Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clamCorbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food(Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and 21¼) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase (k u was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, thek u of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr (0.02 d-1), followed by Zn (0.010~0.017 d-1) and Cd (0.006 d-1). The efflux rate constant for Zn in clam tissues depurated in 0 psu (0.017 d-1) was faster than that in 8 psu (0.010 d-1). Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clamC. fluminea. The relatively high Cd accumulation capacity ofC. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.  相似文献   
2.
The stability properties of a baroclinic zonal current with nonlinear velocity profile are investigated. The integral method is applied to the governing eigenvalue equation having the vertical velocity as the dependent variable. Expressed in terms of the Rossby number and the Richardson number, stability criteria, unstable regions in the complexc plane, and the upper bound of the unstable wave growth rate are found. Some differences in the results are noted between the present model and the quasi-geostrophic streamfunction model, particularly in connection with the effect of the velocity profile curvature termU zz . It is conjectured in the present model that, depending on extreme behaviors ofU zz , the propagation speed of unstable waves can be greater thanU max or smaller thanU min .  相似文献   
3.
The growth rate and potential production of bacterioplankton in cold hydrocarbon seeps located along the Louisiana coast were determined using a pulse-labeling technique. Surprisingly, community doubling times are on the order of 1.1 h, which compares to laboratory-grown cultures. We also found that there are differences in growth rates on relatively small geographic scales, suggesting the influence of site-specific geological features (e.g., gas hydrate mounds). Proceeding downslope to deeper waters, methane-oxidizing bacteria appeared to play a more significant role in community productivity. These preliminary experiments indicated, quite unexpectedly, that water column microbes are growing at a more rapid rate than in any other marine system so far studied and that methane may serve as a primary nutrient (carbon) source in these seep-associated microbial assemblages.  相似文献   
4.
Preliminary analysis with a solar radiation model is generally performed for photovoltaic power generation projects. Therefore, model accuracy is extremely important. The temporal and spatial resolutions used in previous studies of the Korean Peninsula were 1 km × 1 km and 1-h, respectively. However, calculating surface solar radiation at 1-h intervals does not ensure the accuracy of the geographical effects, and this parameter changes owing to atmospheric elements (clouds, aerosol, ozone, etc.). Thus, a change in temporal resolution is required. In this study, one-year (2013) analysis was conducted using Chollian geostationary meteorological satellite data from observations recorded at 15-min intervals. Observation data from the intensive solar site at Gangneung-Wonju National University (GWNU) showed that the coefficient of determination (R²), which was estimated for each month and season, increased, whereas the standard error (SE) decreased when estimated in 15-min intervals over those obtained in 1-h intervals in 2013. When compared with observational data from 22 solar sites of the Korean Meteorological Administration (KMA), R2 was 0.9 or higher on average, and over- or under-simulated sites did not exceed 3 sites. The model and 22 solar sites showed similar values of annual accumulated solar irradiation, and their annual mean was similar at 4,998 MJ m?2 (3.87 kWh m?2). These results show a difference of approximately ± 70 MJ m?2 (± 0.05 kWh m?2) from the distribution of the Korean Peninsula estimated in 1-h intervals and a higher correlation at higher temporal resolution.  相似文献   
5.
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×10~5 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio(TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.  相似文献   
6.
Land subsidence in densely urbanized areas is a global problem that is primarily caused by excessive groundwater withdrawal. The Kathmandu Basin is one such area where subsidence due to groundwater depletion has been a major problem in recent years. Moreover, on 25 April 2015, this basin experienced large crustal movements caused by the Gorkha earthquake (Mw 7.8). Consequently, the effects of earthquake-induced deformation could affect the temporal and spatial nature of anthropogenic subsidence in the basin. However, this effect has not yet been fully studied. In this paper, we applied the SBAS-DInSAR technique to estimate the spatiotemporal displacement of land subsidence in the Kathmandu Basin before and after the Gorkha earthquake, using 16 ALOS-1 Phased Array L-band Synthetic Aperture Radar (PALSAR) images during the pre-seismic period and 26 Sentinel-1 A/B SAR images during the pre- and post-seismic periods. The results showed that the mean subsidence rate in the central part of the basin was about ?8.2 cm/year before the earthquake. The spatial extents of the subsiding areas were well-correlated with the spatial distributions of the compressible clay layers in the basin. We infer from time-series InSAR analysis that subsidence in the Kathmandu basin could be associated with fluvio-lacustrine (clay) deposits and local hydrogeological conditions. However, after the mainshock, the subsidence rate significantly increased to ?15 and ?12 cm/year during early post-seismic (108 days) and post-seismic (2015–2016) period, respectively. Based on a spatial analysis of the subsidence rate map, the entire basin uplifted during the co-seismic period has started to subside and become stable during the early-post-seismic period. This is because of the elastic rebound of co-seismic deformation. However, interestingly, the localized areas show increased subsidence rates during both the early-post- and post-seismic periods. Therefore, we believe that the large co-seismic deformation experienced in this basin might induce the local subsidence to increase in rate, caused by oscillations of the water table level in the clay layer.  相似文献   
7.
A biogeochemical orientation survey was carried out in the vicinity of an epithermal Au deposit in the Moisan Au–Ag mineralized area, Haenam district in Korea. The Au–Ag bearing quartz veins of the mine occur as narrow open-space fillings within Cretaceous silicic pyroclastics. The vein minerals consist mainly of quartz, sericite, pyrite, chalcopyrite, and galena, with some electrum and argentite. The main objectives of this study were to study the geochemical characteristics of rocks, soils and plants in this area, to investigate the spatial relationship between Au and associated elements in rock–soil–plant system, and to evaluate the applicability of biogeochemical prospecting for Au vein occurrences in Korea. Samples of rocks and soils, and leaves of three plant species (Japanese red pine — P. densiflora, oriental white oak — Q. aliena, Japanese mallotus — M. japonicus) were collected from the target mineralized area and control barren locations, and analyzed for trace elements by instrumental neutron activation analysis. Sampling lines were composed of one slope line which is almost parallel to the mineralized quartz-veins, and four transect lines spaced 100 m apart across the veins at 20 m sampling intervals. From the multi-element data of rock samples (n = 9), high values of Au (maximum 2030 ppb) are spatially related to Au–quartz veins. Soil samples (n = 61) collected from five sampling lines show higher values of Au (24–825 ppb) whereas soil samples from the control locations have lower values of Au (below 25 ppb). Many plant species collected from the vicinity of the veins have high Au contents compared with those at the control locations, but the ranges of Au values are variable among plant species. In a total of 128 samples of plant leaves, Q. aliena yielded Au values of 0.4 to 6.9 ppb, and M. japonicus 0.9 to 4.1 ppb. Gold contents in P. densiflora ranged from 0.1 to 5.6 ppb. Plant leaves from control areas show less than 1.6 ppb Au. The biological absorption coefficient (BAC) of Au in plants decreases in the order of Q. aliena > M. japonicus > P. densiflora. Based on the results of the study, Q. aliena appeared to be the best sampling media for biogeochemical prospecting of Au in the study area.  相似文献   
8.
Crystal-plastic olivine deformation to produce subgrain boundaries composed of edge dislocations is an inevitable consequence of asthenospheric mantle flow. Although crystal-plastic deformation and serpentinization are spatio-temporally decoupled, we identified compositional readjustments expressed on the micrometric level as a striped Fe-enriched ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.24 ± 0.02 (zones); 0.12 ± 0.02 (bulk)) or Fe-depleted ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.10 ± 0.01 (zones); 0.13 ± 0.01 (bulk)) zoning in partly serpentinized olivine grains from two upper mantle sections in Norway. Focused ion beam sample preparation combined with transmission electron microscopy (TEM) and aberration-corrected scanning TEM, enabling atomic-level resolved electron energy-loss spectroscopic line profiling, reveals that every zone is immediately associated with a subgrain boundary. We infer that the zonings are a result of the environmental Fe2+Mg−1 exchange potential during antigorite serpentinization of olivine and the drive toward element exchange equilibrium. This is facilitated by enhanced solid-state diffusion along subgrain boundaries in a system, which otherwise re-equilibrates via dissolution-reprecipitation. Fe enrichment or depletion is controlled by the silica activity imposed on the system by the local olivine/orthopyroxene mass ratio, temperature and the effect of magnetite stability. The Fe-Mg exchange coefficients K\textD\textAtg/\textOl K_{\text{D}}^{{{\text{Atg}}/{\text{Ol}}}} between both types of zoning and antigorite display coalescence toward exchange equilibrium. With both types of zoning, Mn is enriched and Ni depleted compared with the unaffected bulk composition. Nanometer-sized, heterogeneously distributed antigorite precipitates along olivine subgrain boundaries suggest that water was able to ingress along them. Crystallographic orientation relationships gained via electron backscatter diffraction between olivine grain domains and different serpentine vein generations support the hypothesis that serpentinization was initiated along olivine subgrain boundaries.  相似文献   
9.
In Korea, soils adjacent to abandoned mines are commonly contaminated by heavy metals present in mine tailings. Further, the disposal of oyster shell waste by oyster farm industries has been associated with serious environmental problems. In this study, we attempted to remediate cadmium (Cd)- and lead (Pb)-contaminated soils typical of those commonly found adjacent to abandoned mines using oyster shell waste as a soil stabilizer. Natural oyster shell powder (NOSP) and calcined oyster shell powder (COSP) were applied as soil amendments to immobilize Cd and Pb. The primary components of NOSP and COSP are calcium carbonate (CaCO3) and calcium oxide (CaO), respectively. X-ray diffraction, X-ray fluorescence and scanning electron microscope analyses conducted in this study revealed that the calcination of NOSP at 770°C converted the less reactive CaCO3 to the more reactive CaO. The calcination process also decreased the sodium content in COSP, indicating that it was advantageous to use COSP as a liming material in agricultural soil. After 30 days of incubation, we found that the 0.1 N HCl-extractable Cd and Pb contents in soil decreased significantly as a result of an increase in the soil pH and the formation of metal hydroxides. COSP was more effective in immobilizing Cd and Pb in the contaminated soil than NOSP. Overall, the results of this study suggest that oyster shell waste can be recycled into an effective soil ameliorant.  相似文献   
10.
Rare earth elements (REEs) of 91 fine-grained bottom sediment samples from five major rivers in Korea (the Han, Keum, and Yeongsan) and China (the Changjiang and Huanghe) were studied to investigate their potential as source indicator for Yellow Sea shelf sediments, this being the first synthetic report on REE trends for bottom sediments of these rivers. The results show distinct differences in REE contents and their upper continental crust (UCC)-normalized patterns: compared to heavy rare earth elements (HREEs), light rare earth elements (LREEs) are highly enriched in Korean river sediments, in contrast to Chinese river sediments that have a characteristic positive Eu anomaly. This phenomenon is observed also in primary source rocks within the river catchments. This suggests that source rock composition is the primary control on the REE signatures of these river sediments, due largely to variations in the levels of chlorite and monazite, which are more abundant in Korean bottom river sediments. Systematic variations in ΣLREE/ΣHREE ratios, and in (La/Yb)–(Gd/Yb)UCC but also (La/Lu)–(La/Y)UCC and (La/Y)–(Gd/Lu)UCC relations have the greatest discriminatory power. These findings are consistent with, but considerably expand on the limited datasets available to date for suspended sediments. Evidently, the REE fingerprints of these river sediments can serve as a useful diagnostic tool for tracing the provenance of sediments in the Yellow Sea, and for reconstructing their dispersal patterns and the circulation system of the modern shelf, as well as the paleoenvironmental record of this and adjoining marginal seas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号