首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   9篇
地质学   1篇
自然地理   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1975年   1篇
排序方式: 共有11条查询结果,搜索用时 46 毫秒
1.
A base isolation system composed of low‐damping isolation bearings and magnetorheological (MR) fluid dampers is described. The MR fluid changes its properties under the influence of a magnetic field resulting in a damper with characteristics that may be modified in real time. This feature enables optimal control under changing excitations in a stable and cost‐effective manner. The voltage is applied according to a selective control strategy. According to the proposed approach the dampers are activated only within a given range of the base displacements. The selective control improves the efficiency of the system and significantly reduces the control forces required for an optimal structural behaviour. Models of five‐ and eight‐storey buildings are used to study the efficiency of the proposed system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
The development and the applications of an active controlled viscous damping device with amplifying braces are described. The system of the dampers, defined as active viscous damping system (AVDS), connected to an amplifying brace (AB) is presented herein. Instantaneous control theory with velocity and acceleration feedback is used to obtain the control forces at each time step during an excitation. Control of the damping forces is possible due to the mechanical structure of the proposed AVDS, and the connection to the AB. The proposed system can be efficiently used to enhance the damping of a structure without modifying its stiffness. The added damping forces can be adjusted in a wide range. The efficiency of the presented system is demonstrated by a numerical simulation of a seven‐storey building subjected to earthquakes. The simulation shows a considerable reduction of control forces required for control to the AVDS with AB, compared to the same system without AB. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
3.
A riparian ecosystem downstream of a small dam in central Texas was instrumented for sap flow, soil moisture content, and stream level from 2001. Stable isotopes in water (D and 18O) were analysed from rainfall, stream, lake, and cored sapwood cellulose from cedar elm (Ulmus crassifolia). The isotope signature of water source to cedar elm was identified by back calculation starting with the water isotopes in cellulose, and accounting for leaf‐water evaporation and biological fractionation during cellulose synthesis. The estimated mean isotope of the source water to cedar elm was enriched above rainfall in similarity to stream water during 2002. Flow paths that may have contributed to estimated variability from regional base flow and recharge water were identified using the variably saturated HYDRUS‐2D model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
The paper presents a continuum method for dynamic analysis of asymmetric tall buildings with uniform cross-section in which the horizontal stiffness is provided by shear walls and columns of arbitrary shape and layout, coupled by horizontal beams. The equations of motions are formulated in variational terms, including axial strain energy. Numerical solutions, obtained by using finite time differences and infinite polynomials, are presented for the response of a twenty-storey building with six shear walls to an impact load and earthquake accelerations. It is shown that omission of the axial deformations results in a substantially distorted pattern of behaviour, some of its effects being:
  • 1 Overestimation of the bending stiffness of the coupled shear walls, with corresponding changes in their stiffness ratios.
  • 2 Underestimation of the periods of the principal modes, with a corresponding change in the dynamic response.
  • 3 Distortion of the magnitude, form, time of onset and coupling of the maximum displacements.
  • 4 Pronounced change in the shear force and moment diagrams for the shear walls, the beams and the building as a whole.
  相似文献   
5.
A method for design of an active control system for multistorey structures using Electrorheological (ER) dampers is presented. Incorporated at various levels of a structural frame, ER dampers are used to improve the response of the structure during earthquakes. Optimal control theory was used to design the ER devices. The aim of the design is to find the most suitable combination of the minimum required forces produced by the ER dampers to obtain the optimal structural response. The mechanical response of ER fluid dampers is regulated by an electric field, depending on the displacements and velocities of the frame. Numerical analysis of an ER damped seven-storey structure is represented as an example. Significant improvement of the structural response was obtained using optimal active controlled ER dampers compared to passive controlled and uncontrolled structures. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
6.
Information included in this summary is based on more detailed reports published in the Bulletin of the Global Volcanism Network, vol. 35, no. 4, April 2010 on the Internet at (). Edited by scientists at the Smithsonian, this bulletin includes reports provided by a worldwide network of correspondents. The reports contain the names and contact information for all sources. Please note that these reports are preliminary and subject to change as events are studied in more detail. The Global Volcanism Program welcomes further reports of current volcanism, seismic unrest, monitoring data, and field observations.  相似文献   
7.
Some landslides mobilize into flows, while others slide and deposit material immediately down slope. An index based on initial dry density and fine-grained content of soil predicted failure mode of 96 landslide initiation sites in Oregon and Colorado with 79% accuracy. These material properties can be used to identify potential sources for debris flows and for slides. Field data suggest that loose soils can evolve from dense soils that dilate upon shearing. The method presented herein to predict failure mode is most applicable for shallow (depth <5?m), well-graded soils (coefficient of uniformity >8), with few to moderate fines (fine-grained content <18%), and with liquid limits <40.  相似文献   
8.
Small‐order streams have highly variable flows that can result in large temporal and spatial variation of the hyporheic zone. Dam construction along these intermittent headwater streams alters downstream flow and influences the hydrologic balance between stream water and the adjacent riparian zone. A 3‐year site study was conducted along an impounded second‐order stream to determine the water balance between stream, unsaturated zone, groundwater and riparian vegetation. The presence of the upstream impoundment provided near‐perennial water flow in the stream channel. The observed woody plant transpiration accounted for 71% of average annual water loss in the site. The overall contribution of stream water via the hyporheic zone to site water balance was 73 cm, or 44% of total inputs. This exceeded both rainfall and upland subsurface contribution to the site. A highly dynamic hyporheic zone was indicated by high water use from woody plants that fluctuated seasonally with stream water levels. We found leaf area development in the canopy layer to be closely coupled with stream and groundwater fluctuations, indicating its usefulness as a potential indicator of site water balance for small dam systems. The net result of upstream impoundment increased riparian vegetation productivity by influencing movement of stream water to storage in the groundwater system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
9.
The development and applications of a supplemental viscous damping device with active capacity are described. The system of the dampers defined as active viscous damping system (AVDS) is presented herein. Structural control principles defined here as active control theory (ACT) are used to obtain the control forces at each time step during an excitation. Control of the damping forces is possible due to a mechanical structure of the proposed AVDS and do not require the input of large power and energy. This system can be efficiently used to enhance the damping of a structure without adding in stiffness and strength. The added damping forces can be adjusted in a wide range. Its efficiency is demonstrated by a numerical simulation of a seven‐storey building subjected to earthquakes. The simulation shows that the behaviour of the damped structure with the AVDS is significantly improved compared to that of an uncontrolled system. Moreover, the response is better than that of adding either passive viscous dampers or electrorheological damping devices. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
10.
This paper presents a theoretical study of a predictive active control system used to improve the response of multi‐degree‐of‐freedom (MDOF) structures to earthquakes. As an example a building frame equipped with electrorheological (ER) dampers is considered. The aim of the design is to find a combination of forces that are produced by the ER dampers in order to obtain an optimal structural response. The mechanical response of ER fluid dampers is regulated by an electric field. Linear auto‐regressive model with exogenous input (ARX) is used to predict the displacements and the velocities of the frame in order to overcome the time‐delay problem in the control system. The control forces in the ER devices are calculated at every time step by the optimal control theory (OCT) according to the values of the displacements and of the velocities that are predicted at the next time step at each storey of the structure. A numerical analysis of a seven‐storey ER damped structure is presented as an example. It shows a significant improvement of the structural response when the predictive active control system is applied compared to that of an uncontrolled structure or that of a structure with controlled damping forces with time delay. The structure's displacements and velocities that were used to obtain the optimal control forces were predicted according to an ‘occurring’ earthquake by the ARX model (predictive control). The response was similar to that of the structure with control forces that were calculated from a ‘known’ complete history of the earthquake's displacement and velocity values, and were applied without delay (instantaneous control). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号