首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   4篇
测绘学   4篇
地球物理   23篇
地质学   16篇
海洋学   1篇
自然地理   7篇
  2021年   1篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有51条查询结果,搜索用时 0 毫秒
1.
A growing body of field, theoretical and numerical modelling studies suggests that predicting river response to even major changes in input variables is difficult. Rivers are seen to adjust rapidly and variably through time and space as well as changing independently of major driving variables. Concepts such as Self‐Organized Criticality (SOC) are considered to better reflect the complex interactions and adjustments occurring in systems than traditional approaches of cause and effect. This study tests the hypothesis that riverbank mass failures which occurred both prior to, and during, an extreme flood event in southeast Queensland (SEQ) in 2011 are a manifestation of SOC. Each wet‐flow failure is somewhat analogous to the ‘avalanche’ described in the initial sand‐pile experiments of Bak et al. (Physical Review Letters, 1987, 59(4), 381–384) and, due to the use of multitemporal LiDAR, the time period of instability can be effectively constrained to that surrounding the flood event. The data is examined with respect to the key factors thought to be significant in evaluating the existence of SOC including; non‐linear temporal dynamics in the occurrence of disturbance events within the system; an inverse power‐law relation between the magnitude and frequency of the events; the existence of a critical state to which the system readjusts after a disturbance; the existence of a cascading processes mechanism by which the same process can initiate both low‐magnitude and high‐magnitude events. While there was a significant change in the frequency of mass failures pre‐ and post‐flood, suggesting non‐linear temporal dynamics in the occurrence of disturbance events, the data did not fit an inverse power‐law within acceptable probability and other models were found to fit the data better. Likewise, determining a single ‘critical’ state is problematic when a variety of feedbacks and multiple modes of adjustment are likely to have operated throughout this high magnitude event. Overall, the extent to which the data supports a self‐organized critical state is variable and highly dependent upon inferential arguments. Investigating the existence of SOC, however, provided results and insights that are useful to the management and future prediction of these features. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
 The Errachidia basin is composed of three superposed aquifers (Senonian, Turonian limestones and Infracenomanian). The Liassic limestone of the upper Atlas borders the northern part of the basin. The piezometric map of the Turonian aquifer displays a north-south flow, with an inflow area from the Atlas. This recharge hypothesis is demontrated by a discriminant analysis performed on chemical data: the majority of the spots are of sodium choride and hydrogenocarbonate types, while several boreholes are assigned to a calcium hydrogenocarbonate type Jurassic component. 18O measurements, using the Atlasic gradient δ18O=–4.18–0.0027 x elevation to estimate the recharge areas, confirm that the recharge area is the basin itself (<1100 m) on the Turonian outcrops, while in the confined part, the Turonian is recharged higher than 1400 m (corresponding to the Atlas). This contribution ranges from 56 to 85%, according to the situation versus the piezometric inflow area. The remainder represents infiltration and vertical leakage from the Senonian layers.  相似文献   
3.
Estimation of mineral resources and reserves with low values of error is essential in mineral exploration. The aim of this study is to compare inverse distance weighted (IDW) and ordinary kriging (OK) methods based on error estimation in the Dardevey iron ore deposit, NE Iran. Anisotropic ellipsoid and variograms were calculated and generated for estimation of Fe distribution by both methods. Density, continuity of ore and waste, the number of points involved, and the discretization factor in the estimation of ore and waste boundaries were determined and the resource estimated by IDW and OK methods. Estimation errors were classified based on JORC standard, and both methods were compared due to distribution of error estimation. Results obtained by the study indicate that error estimation of OK method is less than IDW method and that the results of OK method are reliable.  相似文献   
4.
This paper puts forward a 3D reconstruction methodology applied to the restoration of historic buildings taking advantage of the speed, range and accuracy of a total geodetic station. The measurements representing geo-referenced points produced an interactive and photorealistic geometric mesh of a monument named ‘Neoria.’ ‘Neoria’ is a Venetian building located by the old harbor at Chania, Crete, Greece. The integration of tacheometry acquisition and computer graphics puts forward a novel integrated software framework for the accurate 3D reconstruction of a historical building. The main technical challenge of this work was the production of a precise 3D mesh based on a sufficient number of tacheometry measurements acquired fast and at low cost, employing a combination of surface reconstruction and processing methods. A fully interactive application based on game engine technologies was developed. The user can visualize and walk through the monument and the area around it as well as photorealistically view it at different times of day and night. Advanced interactive functionalities are offered to the user in relation to identifying restoration areas and visualizing the outcome of such works. The user could visualize the coordinates of the points measured, calculate distances and navigate through the complete 3D mesh of the monument. The geographical data are stored in a database connected with the application. Features referencing and associating the database with the monument are developed. The goal was to utilize a small number of acquired data points and present a fully interactive visualization of a geo-referenced 3D model.  相似文献   
5.
The chemical content of the Souss unconfined groundwater displays spatial variations in conductivity (between 400 and 6,000 µS cm-1). The chemical tracers (Cl-, SO42-, Sr2+, Br-), which characterize the different components of the groundwater, allowed the determination of the origin of water salinity. Cl- and SO42-, reaching respectively 2,000 and 1,650 mg L-1, display localized salinity anomalies. Br-/Cl- ratio distinguishes marine-influenced impoverished zones versus the oceanic domain. Thus, salinity anomalies can be attributed: (1) downstream, to a currently existing salt-encroachment (with added waste water) and sedimentary palaeosalinity, (2) in the middle-Souss, to High Atlas evaporites and to irrigation water recycling. Sr2+/Ca2+ ratio (evaporites if >1‰), confirms the evaporitic origin of the anomalies along the right bank of oued Souss. Furthermore, it facilitates the distinction between the different aquifer contributions (Cretaceous, Jurassic and Triassic), and it highlights leakage from deep Turonian limestones in the groundwater recharge system. To the south, recharge is from the Anti Atlas (evaporite-free) waters. Oxygen-18 measurements confirm the groundwater recharge from the High and Anti Atlas as piezometric maps and chemical tracers suggested, plus from leakage from the Turonian and the marine aquifers.  相似文献   
6.
The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10–15 m) in the Cenomanian rock (calcareous–marl), which is characterised by an important permeability from cracks. The soil is sand–clay characterized by a weak coefficient of retention.The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer.To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l−1, chemical oxygen demand = 1000 mg l−1, iron = 23 000 μg l−1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm−1 in electric conductivity, 1620 and 1000 mg l−1 respectively in chlorides and sulfate (), 15–25 μg l−1 in cadmium, and 60–100 μg l−1 in chromium. These concentrations widely exceed the standard values for potable water.Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.  相似文献   
7.
The groundwater flow in a fissured chalky environment at the northern border of the Paris Basin depends on several geological and hydrogeological parameters. Although the studied sector of the basin presents a homogeneous rock type, it is affected by a fracture network. In this type of environment, in which the permeability is low, the groundwater flow displays significant disruption, which is localized in the Fruges region (northern France). The interconnection of the discontinuities (network of fault and/or joints) is reliant on the structural control of groundwater flow through increases in the hydraulic connection between the unsaturated and the saturated zone. The methodology developed herein makes use of microstructural and regional analysis of the fracture patterns, and allowed consideration of the piezometric variations of the chalk aquifer during periods of low and high groundwater levels (April and October 2001) and a diagraphic representation of the estimated physical parameters (electrical resistivity). This enabled us to construct a ‘flow structure’ conceptual model in which we identify two types of faults: tight walls and flow paths that control the piezometric heads and the flow rate. Model validation was carried out on a similar sector. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
In north-eastern Algeria, the Seybouse River is an important source of water used mainly for irrigation of large agricultural areas extending from the Guelma region to Annaba city. Industrial activities in this region contribute substantial water pollution to the river and the groundwater. Based on the different sources of pollution, mapping of areas vulnerable to groundwater pollution has been accomplished by combining land use and data on groundwater levels. The resulting maps show that the most vulnerable areas are those with large industrial activities—in Meboudja, Bouchegouf and Guelma. Infiltration and runoff contribute to pollution, and the highest infiltration rate is generally observed in areas of agricultural and industrial activities. Pollution of the aquifers in this area is of concern. Mountains, such as the Edough and Gelaat Bou Sbaa, contribute high runoff that carries pollutants towards the groundwater.  相似文献   
9.
S. Lallahem  J. Mania 《水文研究》2006,20(7):1585-1595
Chalk crops out from a wide belt around the Paris basin, France, covering an area of about 70 000 km2. In this region, the chalk presents the most important unconfined aquifer because of its extent and the size of its resources ((11–12) × 109 m3 year?1). The assessment of underground outflow depends on the vertical feeding, the infiltration and the hydrometry. This paper analyses the regional structural map, interprets the groundwater reaction under rainfall, explains the water circulation in such media where the reservoir geometry plays an essential role on aquifer response, and determines different aquifer physical parameters. Attempts are made to identify the rapid transfer of groundwater at the level of faults and their important fissures. Based on a quantitative study of the seasonal and interannual piezometry fluctuations, it is noted that the mode and the piezometric chronology events are controlled by major parameters of geological and hydrogeologic contexts, aquifer hydraulic characteristics, the position of upstream and downstream basin limits, groundwater depth and replenishment time. This paper ends with determination of groundwater physical parameters of the diffusivity (T/S, T and S) values by examination of the groundwater replenishments periods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
Ophiolitic bodies in the Dinaro-Hellenic mountain belt are among the most important ones in the Peri-Mediterranean Alpine chains. The characteristic feature of this ophiolitic belt is its Middle to Late Jurassic age of obduction. The ophiolitic bodies form two major belts on each side of the Pelagonian zone: an east Pelagonian belt in the Vardarian domain and a Supra-Pelagonian ophiolitic belt (SPO) to the west. The different hypotheses relative to the origin of the SPO present geodynamic evolution models accounting for most of the available data: a mid-Triassic episode of rifting; a Ladinian–Jurassic episode of sea-floor spreading forming notably the Maliac Ocean; a Middle to Late Jurassic convergent period with subduction and obduction episodes, and finally, a late episode of Tertiary compressional deformation responsible for the westward thrusting of the Jurassic ophiolitic nappes over the external zones. Despite many studies dating from the early 1970s, the eastern or western Pelagonian origin of these ophiolites, especially the SPO, is still under dispute. Whatever the adopted hypothesis, we consider that the main SPO bodies (N-Pindos, Vourinos, Othris, Evia, Argolis) have the same origin because of their geographic continuity and of the similarities in their geological characteristics. We propose that this ocean corresponds everywhere to the Maliac Ocean, defined in Othris from the well-preserved sedimentary (oceanic margin) and ophiolitic nappes thrust during the Late Jurassic obduction onto the Pelagonian platform. There is strong evidence for the existence of two deep basins on both sides of the Pelagonian continental ridge during Triassic–Jurassic times. They correspond, respectively, to the Vardar area to the east and the Pindos domain to the west, one of these domains being at the origin of the SPO. The hypothesis of an eastward emplacement of the SPO from the Pindos domain is based mainly on sedimentological data from the margin series and on structural analyses of ophiolitic bodies. However, we conclude the westward obduction of the Maliac Ocean, originating from the Vardar area, to be the best fitting model. This westward model is supported by paleogeographic and structural constraints on regional scale. Notably, the absence of obducted ophiolites in the Jurassic series of the Koziakas units (units attributed to the western Pelagonian margin) and of the Parnassus domain (on the eastern side of the Pindos basin) is difficult to reconcile with an eastward obduction from the Pindos domain. Other observations, such as the distribution of ophiolitic detritus in the internal and external zones, also promote the westward Late Jurassic obduction of the Maliac Ocean. Our preferred model offers a consistent explanation for the mechanism and timing of the emplacement of the SPO, as well as providing insight on the origin and emplacement of the Vardarian ophiolites. Following this hypothesis, there is no need for a clear boundary between the SPO and the west Vardarian ophiolitic bodies as they were obducted from the same oceanic basin and during the same Jurassic tectonic event. In this paper, we develop evidence in favor of the eastern Pelagonian origin for the SPO (our adopted model) and provide discussion on the data supporting the main alternative hypothesis (western origin for the SPO).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号