首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   9篇
测绘学   2篇
大气科学   17篇
地球物理   25篇
地质学   40篇
海洋学   24篇
天文学   39篇
综合类   1篇
自然地理   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   13篇
  2015年   6篇
  2014年   13篇
  2013年   8篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   12篇
  2008年   8篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1980年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
1.
 Between 2 and 6 February, 1995, a 25 km2 area at the Dry Tortugas (Florida Keys) was surveyed with a 100 kHz side-scan sonar system and 3.5-kHz subbottom profiler. The side-scan system revealed a pattern of alternating high and low backscatter. The subbottom profiler showed areas with no acoustic penetration between sediment troughs. The combination of both methods allowed delineation of the boundaries in high-backscatter regions, and sediment samples allowed correlations between high backscatter and coarser-grained sediments.  相似文献   
2.
Seismic images of a collision zone offshore NW Sabah/Borneo   总被引:2,自引:0,他引:2  
Multichannel reflection seismic data from the southern South China Sea, refraction and gravity modelling were used to investigate the compressional sedimentary structures of the collision-prone continental margin off NW Borneo. An elongated imbricate deepwater fan, the toe Thrust Zone bounds the Northwest Borneo Trough to the southeast. The faults separating the individual imbricates cut through post-Early Miocene sediments and curve down to a carbonate platform at the top of the subsiding continental Dangerous Grounds platform that forms the major detachment surface. The age of deformation migrates outward toward the front of the wedge. We propose crustal shortening mechanisms as the main reason for the formation of the imbricate fan. At the location of the in the past defined Lower Tertiary Thrust Sheet tectonostratigraphic province a high velocity body was found but with a much smaller extend than the previously defined structure. The high velocity structure may be interpreted either as carbonates that limit the transfer of seismic energy into the sedimentary layers beneath or as Paleogene Crocker sediments dissected by remnants of a proto-South China Sea oceanic crust that were overthrust onto a southward migrating attenuated continental block of the Dangerous Grounds during plate convergence.  相似文献   
3.
Neutron capture effects in meteorites and lunar surface samples have been successfully used in the past to study exposure histories and shielding conditions. In recent years, however, it turned out that neutron capture effects produce a nuisance for some of the short‐lived radionuclide systems. The most prominent example is the 182Hf‐182W system in iron meteorites, for which neutron capture effects lower the 182W/184W ratio, thereby producing too old apparent ages. Here, we present a thorough study of neutron capture effects in iron meteorites, ordinary chondrites, and carbonaceous chondrites, whereas the focus is on iron meteorites. We study in detail the effects responsible for neutron production, neutron transport, and neutron slowing down and find that neutron capture in all studied meteorite types is not, as usually expected, exclusively via thermal neutrons. In contrast, most of the neutron capture in iron meteorites is in the epithermal energy range and there is a significant contribution from epithermal neutron capture even in stony meteorites. Using sophisticated particle spectra and evaluated cross section data files for neutron capture reactions we calculate the neutron capture effects for Sm, Gd, Cd, Pd, Pt, and Os isotopes, which all can serve as neutron‐dose proxies, either in stony or in iron meteorites. In addition, we model neutron capture effects in W and Ag isotopes. For W isotopes, the GCR‐induced shifts perfectly correlate with Os and Pt isotope shifts, which therefore can be used as neutron‐dose proxies and permit a reliable correction. We also found that GCR‐induced effects for the 107Pd‐107Ag system can be significant and need to be corrected, a result that is in contrast to earlier studies.  相似文献   
4.
The mangrove crab Aratus pisonii was considered to have an amphi‐American distribution; however, a recent study revealed that the Eastern Tropical Pacific populations were genetically distinct, thus representing a new species: Aratus pacificus. These species separated by the Isthmus of Panama have diverged under different environmental conditions that may have influenced their reproductive biology. As the available information about this genus concerns almost exclusively the Caribbean species, the aim of the present study was to analyse and compare reproductive aspects of Apacificus and A. pisonii obtained from both the Pacific and Caribbean coasts of Costa Rica. Females were collected from April 2011 to April 2012, and reproductive features such as breeding season, size distribution of ovigerous females, fecundity, reproductive output, embryo volume and embryo water content were assessed. Both species produced embryos during the entire sampled period. Most females of A. pacificus carrying embryos close to hatching were found during the rainy season. Ovigerous females of A. pisonii were substantially larger and reached sexual maturity at a larger size than females of A. pacificus. Embryo production started in A. pacificus at a smaller female size than in A. pisonii. As fecundity increased with female size, the average fecundity was lower in A. pacificus. Females of A. pisonii produced larger embryos, which might be related to lower food availability: higher energy content in the embryo enhances the chances of larval survival. These data regarding reproductive features of the Pacific and Caribbean species support the conclusion to separate A. pacificus from A. pisonii.  相似文献   
5.
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   
6.
Abar al' Uj (AaU) 012 is a clast‐rich, vesicular impact‐melt (IM) breccia, composed of lithic and mineral clasts set in a very fine‐grained and well‐crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN‐suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a ~1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali‐suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN‐ or Mg‐suite. Its lower Mg# (59) compared to Mg‐suite rocks also excludes a relationship with these types of lunar material.  相似文献   
7.
Wiener optimal filtering of GRACE data   总被引:4,自引:0,他引:4  
We present a spatial averaging method for Gravity Recovery and Climate Experiment (GRACE) gravity-field solutions based on the Wiener optimal filtering. The optimal filter is designed from the least-square minimization of the difference between the desired and filtered signals. It requires information about the power spectra of the desired gravitational signal and the contaminating noise, which is inferred from the average GRACE degree-power spectrum. We show that the signal decreases with increasing spherical harmonic degree j with approximately j−b, where b = 1.5 for GRACE data investigations. This is termed the Second Kaula rule of thumb for temporal variations of the Earth’s gravity field. The degree power of the noise increases, in the logarithmic scale, linearly with increasing j. The Wiener optimal filter obtained for the signal model with b = 1.5 closely corresponds to a Gaussian filter with a spatial half width of 4° (∼440 km). We find that the filtered GRACE gravity signal is relatively insensitive to the exponent b of the signal model, which indicates the robustness of Wiener optimal filtering. This is demonstrated using the GFZ-GRACE gravity-field solution for April 2004.  相似文献   
8.
9.
10.
The frequent coincidence of volcanic forcing with El Niño events disables the clear assignment of climate anomalies to either volcanic or El Niño forcing. In order to select the signals, a set of four different perpetual January GCM experiments was performed (control, volcano case, El Niño case and combined volcano/El Niño case) and studied with advanced statistical methods for the Northern Hemisphere winter. The results were compared with observations. The signals for the different forcings are discussed for three variables (temperature, zonal wind and geopotential height) and five levels (surface, 850 hPa, 500 hPa, 200 hPa and 50 hPa). The global El Niño signal can be selected more clearly in the troposphere than in the stratosphere. In contrast, the global volcano signal is strongest in the stratospheric temperature field. The amplitude of the perturbation for the volcano case is largest in the Atlantic region. The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland are well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is weak in high latitudes during winter. A statistically significant tropospheric signal of El Niño forcing occurs in the subtropics and in the midlatitudes of the North Pacific. The local anomalies in the El Niño forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combined signal is different from a simple linear combination of the separate signals. It leads to a climate perturbation stronger than for forcing with El Niño or stratospheric aerosol alone and to a somewhat modified pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号