首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
  国内免费   3篇
大气科学   9篇
地球物理   6篇
地质学   20篇
海洋学   20篇
天文学   42篇
自然地理   9篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   10篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2010年   1篇
  2009年   10篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1976年   3篇
  1975年   1篇
  1971年   1篇
  1908年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
We study the solar-cycle variation of the zonal flow in the near-surface layers of the solar convection zone from the surface to a depth of 16 Mm covering the period from mid-2001 to mid-2013 or from the maximum of Cycle 23 through the rising phase of Cycle 24. We have analyzed Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) Dopplergrams with a ring-diagram analysis. The zonal flow varies with the solar cycle showing bands of faster-than-average flows equatorward of the mean latitude of activity and slower-than-average flows on the poleward side. The fast band of the zonal flow and the magnetic activity appear first in the northern hemisphere during the beginning of Cycle 24. The bands of fast zonal flow appear at mid-latitudes about three years in the southern and four years in the northern hemisphere before magnetic activity of Cycle 24 is present. This implies that the flow pattern is a direct precursor of magnetic activity. The solar-cycle variation of the zonal flow also has a poleward branch, which is visible as bands of faster-than-average zonal flow near 50° latitude. This band appears first in the southern hemisphere during the rising phase of the Cycle 24 and migrates slowly poleward. These results are in good agreement with corresponding results from global helioseismology.  相似文献   
2.
依据南海低纬地区SA09-040孔高分辨率的孢粉记录,自下至上划分了4个孢粉组合带。从孢粉成分的变化,重建了22.25ka B P以来的植被与气候变化历史。结果表明:孢粉主要来源于婆罗洲和周围岛屿,孢粉1带(22.25~16.6ka B P),低山雨林植被发育,为暖热气候,从测年时间看,当时为末次冰期晚期。孢粉2带(16.6~10.82ka B P,为末次冰消期),植被以热带低山雨林和低地雨林为主,针叶的松数量较多,当时的气温比现在低。孢粉3带(全新世早期,10.82~6.43ka B P),植被以热带低山雨林和低地雨林为主,针叶松属数量减少,气温比前期升高,海平面也上升。孢粉4带(全新世中晚期,6.43ka B P至今),全新世中期为炎热、湿润的气候环境,全新世晚期可能与婆罗洲现今的植被景观相近,为热、湿的气候环境。  相似文献   
3.
The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city’s UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city’s UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 °C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38–1.16 °C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04–1.88 °C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.  相似文献   
4.
This paper represents an attempt to combine the output of several models that deal with future climatic, hydrologic and economic conditions in the Great Lakes and makes some predictions about the possible impact of one scenario of 2 × CO2 climate on Great Lakes shipping. It is realized that there is a great deal of uncertainty in all the models and that improvements are continually being made. Data from a General Circulation Model of future temperature and precipitation in the Great Lakes basin, a Great Lakes levels and flows model from the Canada Centre for Inland Waters and an International Joint Commision's Great Lakes economic model modified by the University of Wisconsin were used. The 1900–1976 period of lake levels and flows was used. The hydrologic model indicated that future mean lake levels may be reduced by one-half meter, and that the extreme low levels of the mid 1960's could occur 77% of the time in the future. No ice cover is predicted for any lake except Erie, permitting an eleven month shipping season. Five scenarios of future impact on shipping were evaluated. It was found that mean annual shipping costs may increase by 30% and the frequency of years when costs exceed those of the period of low lake levels (1963–65) could rise to 97%. Possible policy options in a future with climatically induced lower lake levels could include regulation to keep levels artificially high by diversions into the system, or increased dredging of the connecting channels.  相似文献   
5.
The middle–late Campanian was marked by an increase in the bioprovinciality of calcareous microfossil assemblages into distinct Tethyan, Transitional, and Austral Provinces that persisted to the end of the Maastrichtian. The northwestern Australian margin belonged to the Transitional Province and the absence of key Tethyan marker species such as Radotruncana calcarata and Gansserina gansseri has led petroleum companies operating in the area to use the locally developed KCCM integrated calcareous microfossil zonation scheme. The KCCM zonation is a composite scheme comprising calcareous nannofossil (KCN), planktonic foraminiferal (KPF) and benthonic foraminiferal (KBF) zones. This paper presents the definitions and revisions of Zones KCCM8–19, from the highest occurrence (HO) of Aspidolithus parcus constrictus to the lowest occurrence (LO) of Ceratolithoides aculeus, and builds on our previous early–late Maastrichtian study. The presence of a middle–upper Campanian disconformity is confirmed by microfossil evidence from the Vulcan Sub-basin, Exmouth and Wombat plateaus, and the Southern Carnarvon Platform. In the Vulcan Sub-basin and on the Exmouth Plateau (ODP Hole 762C) the hiatus extends from slightly above the LO of common Rugoglobigerina rugosa to above the LO of Quadrum gothicum. On the Wombat Plateau (ODP Hole 761B) it spans from above the LO of Heterohelix semicostata to above the LO of Quadrum gothicum; and in the Southern Carnarvon Platform the disconformity has its longest duration from above the HO of Heterohelix semicostata to above the LO of Quadrum sissinghii. A significant revision of the events which define Zones KCCM18 and 19 was necessary owing to the observation that the LO of Ceratolithoides aculeus occurs below the HOs of Archaeoglobigerina cretacea and Stensioeina granulata incondita and the LO of common Rugoglobigerina rugosa. In the original zonation these events were considered to be coincident.  相似文献   
6.
7.
Howe  R.  Komm  R.  Hill  F. 《Solar physics》2000,192(1-2):427-435
We have completed an analysis of the first 35 GONG Months (1 GM = 36 days) covering the last solar minimum and the rising phase of cycle 23. The mode parameters have been estimated from 33 time series, each of 3-GM duration, with centers spaced by 1 GM. We report on the temporal evolution of the rotational splitting coefficients up to 15th order. The coefficients do not correlate well with any surface magnetic flux measure yet considered, but we find small but significant trends in their temporal evolution. Inverting the coefficients for two-dimensional rotation information and looking at deviations from the mean produces a picture of a systematic zonal flow migrating towards lower latitudes during the rising phase of the cycle. This flow is probably associated with the torsional oscillation. Similar trends are seen in the 1986–1990 BBSO data.  相似文献   
8.
9.
Public perceptions of rainfall change in India   总被引:1,自引:1,他引:0  
People’s perceptions of changes in local weather patterns are an important precursor to proactive adaptation to climate change. In this paper, we consider public perceptions of changes in average rainfall in India, analyzing the relationship between perceptions and the instrumental record. Using data from a national sample survey, we find that local instrumental records of precipitation are a strong predictor of perceived declines in rainfall. Perceptions of decreasing rainfall were also associated with perceptions of changes in extreme weather events, such as decreasing frequency of floods and severe storms, increasing frequency of droughts, and decreasing predictability of the monsoon. Higher social vulnerability—including low perceived adaptive capacity and greater food and livelihood dependence on local weather—was also associated with perceptions of decreasing rainfall. While both urban and rural respondents were likely to perceive local changes in precipitation, we show that rural respondents in general were more sensitive to actual changes in precipitation. Individual perceptions of changes in local climate may play an important role in shaping vulnerability to global climate change, adaptive behavior, and support for adaptation and mitigation policies. Awareness of local climate change is therefore particularly important in regions where much of the population is highly exposed and sensitive to the impacts of climate change.  相似文献   
10.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号