首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   12篇
  国内免费   3篇
测绘学   5篇
大气科学   13篇
地球物理   62篇
地质学   63篇
海洋学   53篇
天文学   41篇
综合类   6篇
自然地理   13篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   14篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   4篇
  2011年   11篇
  2010年   9篇
  2009年   14篇
  2008年   10篇
  2007年   16篇
  2006年   11篇
  2005年   19篇
  2004年   17篇
  2003年   7篇
  2002年   7篇
  2001年   12篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1964年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
1.
Using a Rayleigh distillation fractionation model, we calculate that the maximum isotope fractionation potentially achievable is less than 5% during the early stages of gas release from a sample. Our calculation corrects the erroneous conclusions of Gautheron and Moreira (2003), who re‐interpreted the plume‐like neon isotopic compositions found in metasomatic apatite from a south‐eastern Australian xenolith (Matsumoto et al., 1997) to be the result of Rayleigh‐type isotope fractionation of originally MORB‐type neon during stepheating gas extraction. We stress that the modelling of neon isotopic fractionation by Gautheron and Moreira (2003) is incorrect, and that the finding of a plume‐like neon isotopic composition in the apatite by Matsumoto et al. (1997) remains a quite valid and robust conclusion.  相似文献   
2.
Hydrological and geochemical studies for earthquake prediction in Japan during the last two decades are reviewed. Following the 1995 Hyogo-ken Nanbu (Kobe) earthquake, the central approach to research on earthquake prediction was modified. Instead of precursory detection, emphasis was placed on understanding the entire earthquake cycle. Moreover, the prediction program for the anticipated Tokai earthquake was revised in 2003 to include the detection of preslip-related precursors. These changes included the promotion of the following hydrological and geochemical studies for earthquake prediction: (1) development and/or application of statistical methods to extract small fluctuations from hydrological/geochemical data, (2) evaluation of the detectability of preslip-related anomalies in terms of groundwater levels in wells in the Tokai region, and (3) establishment of a new groundwater and borehole strain observation network for Nankai and Tonankai earthquake prediction research. The following basic geochemical studies were carried out: (1) development of a new monitoring system using a quadrupole mass spectrometer, (2) experimental studies on hydrogen generation by the grinding of rock and crystal powders, (3) comprehensive monitoring of groundwater gas and precise crustal deformation, and (4) mantle-derivative helium observation to compare with seismic velocity structures and the distribution of non-volcanic tremors. Moreover, hydrological and geochemical investigations related to the evolution of fault zones were introduced within the framework of fault zone drilling projects.  相似文献   
3.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   
4.
Seawater samples were collected in the North Pacific along 175°E during a cruise of the Northwest Pacific Carbon Cycle Study (NOPACCS) program in 1994. Many properties related to the carbonate system were analyzed. By using well-known ratios to correct for chemical changes in seawater, the CO2 concentration at a given depth was back calculated to its initial concentration at the time when the water left the surface in winter. We estimated sea-surface CO2 and titration alkalinity (TA) in present-day winter, from which we evaluated the degree of air-sea CO2 disequilibrium in winter was. Using a correction factor for air-sea CO2 disequilibrium in winter, we reconstructed sea-surface CO2 in pre-industrial times. The difference between the back-calculated initial CO2 and sea-surface CO2 in pre-industrial times should correspond to anthropgenic CO2 input. Although the mixing of different water masses may cause systematic error in the calculation, we found that the nonlinear effect induced by the mixing of different water masses was negligible in the upper layer of the North Pacific subtropical gyre along 175°E. The results of our improved method of assessing the distribution of anthropogenic CO2 in that region show marked differences from those obtained using the previous back-calculation method.  相似文献   
5.
A large meander of the Kuroshio was generated in the region off the southern coast of Japan in August 2004 and continued until approximately July 2005. The formation and decay of the large-meander (LM) path was observed by bottom pressure (BP) sensors installed on inverted echo sounders (PIESs) and a seismic observing system off Shikoku. The variation in BP was examined focusing on the development, persistence, and decay of the LM path. The BP was found to be depressed associated with a Kuroshio path disturbance, called a small meander, and this BP depression led the sea surface height (SSH) depression by up to approximately two months. The temporal phase shift between the sea surface and deep disturbances was significantly greater than those of other small meanders that did not develop into large meanders. After the formation of the LM path, the BP beneath the Kuroshio increased with a lag of approximately two months behind the SSH elevation along with the upward displacement of the main thermocline. The increase in BP is associated with that of the positive southward BP gradient anomaly, i.e., the eastward deep Kuroshio current anomaly, which suggests an enhancement of the topographic steering and stability of the LM path. This is consistent with the fact that no small meanders occurred in the early LM period from late July 2004 to late January 2005.  相似文献   
6.
This paper investigates the feasibility of an ocean data assimilation system to analyze the salinity variability associated with the barrier layer in the equatorial Pacific. In order to validate reproducibility of the temperature and salinity fields, we perform an assimilation run where some temperature and salinity observations by TRITON buoys and Argo floats are withheld. The assimilation run reproduces interannual variability of salinity in the equatorial Pacific exhibited in the data that are withheld. Statistics shows that salinity values and variations in the assimilation run are closer to the data than the climatology and in the model free run. We also confirm that zonal currents in the equatorial Pacific in the reanalysis, where all available temperature and salinity data are assimilated, are consistent with an observation-based mapping and the data of the Acoustic Doppler Current Profiler mounted on TAO buoys. Variability of the barrier layer and relevant salinity field in the reanalysis is consistent with former studies. A thick barrier layer area generally exists west of the equatorial salinity front and is displaced zonally with the migration of the front in the response to El Niño-Southern Oscillation, although the area moved to the east over the front in the 1997 El Niño. It is confirmed that the barrier layer thickness is closely correlated with the near-surface temperature in the equatorial Pacific.  相似文献   
7.
The aim of the Japanese-French Kaiyo 87 cruise was the study of the spreading axis in the North Fiji Basin (SW Pacific). A Seabeam and geophysical survey allowed us to define the detailed structure of the active NS spreading axis between 16° and 22° S and its relationships with the left lateral motion of the North Fiji Fracture Zone. Between 21° S and 18°10′ S, the spreading axis trends NS. From 18°10 S to 16°40 S the orientation of the spreading axis changes from NS to 015°. North of 16°40′ S the spreading axis trends 160°. These two 015° and 160° branches converge with the left lateral North Fiji fracture zone around 16°40′ S to define an RRFZ triple junction. Water sampling, dredging and photo TV deep towing give new information concerning the hydrothermal activity along the spreading axis. The discovery of hydrothermal deposits associated with living communities confirms this activity.  相似文献   
8.
Iron fertilization of nutrient-rich surface waters of the ocean is one possible way to help slow the rising levels of atmospheric CO2 by sequestering it in the oceans via biological carbon export. Here, I use an ocean general circulation model to simulate a patch of nutrient depletion in the subpolar northwest Pacific under various scenarios. Model results confirm that surface fertilization is an inefficient way to sequester carbon from the atmosphere (Gnanadesikan et al., 2003), since only about 20% of the exported carbon comes initially from the atmosphere. Fertilization reduces future production and thus CO2 uptake by utilizing nutrients that would otherwise be available later. Effectively, this can be considered as leakage when compared to a control run. This “effective” leakage and the actual leakage of sequestered CO2 cause a significant, rapid decrease in carbon retention (only 30–45% retained after 10 years and less than 20% after 50 years). This contrasts markedly with the almost 100% retention efficiency for the same duration using the same model, when carbon is disposed directly into the northwest Pacific (Matsumoto and Mignone, 2005). As a consequence, the economic effectiveness of patch fertilization is poor in two limiting cases of the future price path of carbon. Sequestered carbon in patch fertilization is lost to the atmosphere at increasingly remote places as time passes, which would make monitoring exceedingly difficult. If all organic carbon from one-time fertilization reached the ocean bottom and remineralized there, acidification would be about −0.05 pH unit with O2 depletion about −20 μmol kg−1. These anomalies are probably too small to seriously threaten deep sea biota, but they are underestimated in the model because of its large grid size. The results from this study offer little to advocate purposeful surface fertilization as a serious means to address the anthropogenic carbon problem.  相似文献   
9.
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   
10.
We deployed a profiling buoy system incorporating a fast repetition rate fluorometer in the western subarctic Pacific and carried out time-series observations of phytoplankton productivity from 9 June to 15 July 2006. The chlorophyll a (Chl a) biomass integrated over the euphotic layer was as high as 45–50 mg Chl a m−2 in the middle of June and remained in the 30–40 mg Chl a m−2 range during the rest of observation period; day-to-day variation in Chl a biomass was relatively small. The daily net primary productivity integrated over the euphotic layer ranged from 144 to 919 mg C m−2 day−1 and varied greatly, depending more on insolation rather than Chl a biomass. In addition, we found that part of primary production was exported to a 150-m depth within 2 days, indicating that the variations in primary productivity quickly influenced the organic carbon flux from the upper ocean. Our results suggest that the short-term variability in primary productivity is one of the key factors controlling the carbon cycle in the surface ocean in the western subarctic Pacific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号