首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   1篇
地质学   4篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2011年   2篇
  2008年   1篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Activities to provide energy for an expanding population are increasingly disrupting and changing the concentration of atmospheric gases that increase global temperature. Increased CO2 and temperature have a clear effect on growth and production of rice as they are key factors in photosynthesis. Rice yields could be increased with increased levels of CO2, however, the rise of CO2 may be accompanied by an increase in global temperature. The effect of doubling CO2 levels on rice production was predicted using rice crop models. They showed different effects of climate change in different countries. A simulation of the Southeast Asian region indicated that a doubling of CO2 increases yield, whereas an increase in temperature decreases yield.Enhanced UV-B radiation resulting for stratographic ozone depletion has been demonstrated to significantly reduce plant height, leaf area and dry weight of two rice cultivars under glasshouse conditions. Data are still insufficient, however, for conclusive results on the effect of UV-B radiation on rice growth under field conditions.Rice production itself has a significant effect on global warming and atmospheric chemistry through methane emission from flooded ricefields. Water regime, soil properties and the rice plant are major factors controlling the flux of methane in ricefields. Global and regional estimates of methane emission rates are still highly uncertain and tentative. Integration of mechanistic modeling of methane fluxes with geographic information systems of factors controlling these processes are required to improve estimates and predictions.  相似文献   
2.
In the current study, we quantified changes in the growth and alkaloid content of wild poppy, (Papaver setigerum) as a function of recent and projected changes in global atmospheric carbon dioxide concentration, [CO2]. The experimental [CO2] values (300, 400, 500 and 600μmol mol?1) correspond roughly to the concentrations that existed during the middle of the twentieth century, the current concentration, and near and long-term projections for the current century (2050 and 2090), respectively. Additional carbon dioxide resulted in significant increases in leaf area and above ground biomass for P. setigerum at all [CO2] relative to the 300μmol mol?1 baseline. Reproductively, increasing [CO2] from 300 to 600μmol mol?1 increased the number of capsules, capsule weight and latex production by 3.6, 3.0 and 3.7×, respectively, on a per plant basis. Quantification of secondary compounds (i.e. those not involved in primary metabolism) included the alkaloids morphine, codeine, papaverine and noscapine. The amount of all alkaloids increased significantly on a per plant basis, with the greatest relative increase occurring with recent increases in atmospheric carbon dioxide (e.g. from 300 to 400μmol mol?1). Overall, these data suggest that as atmospheric [CO2] continues to increase, significant effects on the production of secondary plant compounds of pharmacological interest (i.e. opiates) could be expected.  相似文献   
3.
Land subsidence severely threatens most of the coastal plains around the world where high productive industrial and agricultural activities and urban centers are concentrated. Coastal subsidence damages infrastructures and exacerbates the effect of the sea-level rise at regional scale. Although it is a well-known process, there is still much more to be improved on the monitoring, mapping and modeling of ground movements, as well as the understanding of controlling mechanisms. The International Geoscience Programme recently approved an international project (IGCP 663) aiming to bring together worldwide researchers to share expertise on subsidence processes typically occurring in coastal areas and cities, including basic research, monitoring and observation, modelling and management. In this paper, we provide the research communities and potential stakeholders with the basic information to join the participating teams in developing this project. Specifically, major advances on coastal subsidence studies and information on well-known and new case studies of land subsidence in China, Italy, The Netherlands, Indonesia, Vietnam and Thailand are highlighted and summarized. Meanwhile, the networking, dissemination, annual meeting and field trip are briefly introduced.  相似文献   
4.
5.
Halogenated Very Short-lived Substances (VSLS), such as bromoform, dibromomethane and methyl iodide, are naturally produced in the oceans and are involved in ozone depletion in the troposphere and the stratosphere. The effect of climate change on the oceanic emissions of these compounds is not well quantified. Based on present-day observed global oceanic and atmospheric concentrations, and historic and future data from three CMIP5 models, past and future sea-to-air fluxes of these VSLS are calculated. The simulations are used to infer possible effects of projected changes of physical forcing on emissions in different oceanic regimes. CMIP5 model output for 1979–2100 from the historical scenario and the RCP scenarios 2.6 and 8.5 are used as input data for the emission calculations. Of the parameters that have the main influence on the sea-to-air fluxes, the global sea surface temperatures show a steady increase during the twenty-first century, while the projected changes of sea surface wind speed is very small. The calculated emissions based on the historical CMIP5 model runs (1979–2005) increased over the 26 year period and agree well with the emissions based on ERA-Interim data. The future sea-to-air fluxes of VSLS generally increase during the twenty-first century under the assumption of constant concentration fields in the ocean and atmosphere. The multi-model mean global emissions of bromoform increase by 29.4% (9.0%) between 1986 and 2005 and 2081–2100 under RCP 8.5 (2.6) and dibromomethane and methyl iodide emissions increase by 23.3% (6.4%) and 5.5% (1.5%), respectively. Uncertainties of the future emission estimates, driven by ongoing environmental changes such as changing oceanic productivity (not considered in this study) are discussed.  相似文献   
6.
Jakarta is the capital city of Indonesia with a population of about 9.6 million people, inhabiting an area of about 660 square-km. In the last three decades, urban development of Jakarta has grown very rapidly in the sectors of industry, trade, transportation, real estate, and many others. This exponentially increased urban development introduces several environmental problems. Land subsidence is one of them. The resulted land subsidence will also then affect the urban development plan and process. It has been reported for many years that several places in Jakarta are subsiding at different rates. The leveling surveys, GPS survey methods, and InSAR measurements have been used to study land subsidence in Jakarta, over the period of 1982–2010. In general, it was found that the land subsidence exhibits spatial and temporal variations, with the rates of about 1–15 cm/year. A few locations can have the subsidence rates up to about 20–28 cm/year. There are four different types of land subsidence that can be expected to occur in the Jakarta basin, namely: subsidence due to groundwater extraction, subsidence induced by the load of constructions (i.e., settlement of high compressibility soil), subsidence caused by natural consolidation of alluvial soil, and tectonic subsidence. It was found that the spatial and temporal variations of land subsidence depend on the corresponding variations of groundwater extraction, coupled with the characteristics of sedimentary layers and building loads above it. In general, there is strong relation between land subsidence and urban development activities in Jakarta.  相似文献   
7.
正Land subsidence is a worldwide geohazard consisting in the lowering of the ground surface due to natural and human-induced processes occurring in the shallow and deep subsoil.Over the last two decades,land subsidence has caused damages and widespread impacts to a variety of infrastructures in coastal cities (Ma et al.,2011;Liu et al.,2016;Minderhoud et al.,2018).Meanwhile,it is particularly alarming as it reduces the ground  相似文献   
8.
Although the role of rising atmospheric carbon dioxide concentration [CO2] on plant growth and fecundity is widely acknowledged as important within the scientific community; less research is available regarding the impact of [CO2] on secondary plant compounds, even though such compounds can play a significant role in human health. At present, Artemisia annua, an annual plant species native to China, is widely recognized as the primary source of artemesinin used in artemesinin combination therapies or ACTs. ACTs, in turn, are used globally for the treatment of simple Plasmodium falciparum malaria, the predominant form of malaria in Africa. In this study, artemesinin concentration was quantified for multiple A. annua populations in China using a free-air CO2 enrichment (FACE) system as a function of [CO2]-induced changes both in situ and as a function of the foliar ratio of carbon to nitrogen (C:N). The high correlation between artemesinin concentration and C:N allowed an historical examination of A. annua leaves collected at 236 locations throughout China from 1905 through 2009. Both the historical and experimental data indicate that increases in artemesinin foliar concentration are likely to continue in parallel with the ongoing increase in atmospheric [CO2]. The basis for the [CO2]-induced increase in artemesinin is unclear, but could be related to the carbon: nutrient hypothesis of Bryant et al. (1983). Overall, these data provide the first evidence that historic and projected increases in atmospheric [CO2] may be associated with global changes in artemesinin chemistry, potentially allowing a greater quantity of drug available for the same area of cultivation.  相似文献   
9.
Early attempts to utilize magnetic data to understand the volcanic and subvolcanic succession on the Faroese Continental Shelf have shown that conventional interpretation and modelling of magnetic data from this area leads to ambiguous results. Interpretation of the aeromagnetic data on the Faroese Continental Shelf shows that some previously identified basement highs coincide with reduced-to-pole magnetic highs, whereas others coincide with negative or mixed magnetic features. Similarly, igneous centres are characterized by different polarity magnetic anomalies. Palaeomagnetic analysis of the onshore volcanic succession has demonstrated that the thermoremanent magnetization of the basaltic lavas is stronger than the induced magnetism, and both reversely and normally magnetized units are present. We have tested this with 2½D profile modelling using the palaeomagnetic information to correlate high-amplitude magnetic anomalies with basalt successions containing changes in magnetic polarity. This approach has enabled us to map the termination of the differently magnetized units offshore and thereby extend the mapping of the Faroe Island Basalt Group on the Faroese Platform and into adjacent areas.  相似文献   
10.
Invasive species and climate change: an agronomic perspective   总被引:2,自引:0,他引:2  
In the current review we wish to draw attention to an additional aspect of invasive species and climate change, that of agricultural productivity and food security. We recognize that at present, such a review remains, in part, speculative, and more illustrative than definitive. However, recent events on the global stage, particularly in regard to the number of food riots that occurred during 2008, even at a time of record harvests, have prompted additional interest in those factors, including invasive species, which could, through climatic uncertainty, alter food production. To that end, as agricultural scientists, we wish to begin an initial evaluation of key questions related to food production and climate change including: how vulnerable is agriculture to invasive species?; are current pest management strategies sufficient to control invasive outbreaks in the future?; what are the knowledge gaps?; can we provide initial recommendations for scientists, land managers and policy makers in regard to available resources? Our overall goals are to begin a synthesis of potential impacts on productivity, to identify seminal research areas that can be addressed in future research, and to provide the scientific basis to allow agronomists and land managers to formulate mitigation and adaptation options regarding invasive species and climate change as a means to maintain food security.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号