首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   2篇
地质学   1篇
海洋学   2篇
  2020年   1篇
  2018年   1篇
  2010年   1篇
  2008年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Structural properties of natural jasper from Taroko Gorge (Taiwan) have been investigated by means of powder X-ray diffraction, electron paramagnetic resonance (EPR) and Fourier transform infrared spectroscopic techniques. The EPR spectrum at room temperature exhibits a sharp resonance signal at g = 2.007 and two more resonance signals centered at g ≈ 4.3 and 14.0. The resonance signal at g = 2.007 has been attributed to the E′ center and is related to a natural radiation-induced paramagnetic defect. Two more resonance signals centered at g ≈ 4.3 and 14.0 are characteristic of Fe3+ ions. The EPR spectra recorded at room temperature of jasper samples, heat-treated at temperatures ranging from 473 to 1,473 K exhibit marked temperature dependence. The resonance signal corresponding to E′ center disappears at elevated temperatures. A broad, intense resonance signal centered at g ≈ 2.0 appears at elevated temperatures. This resonance signal is a characteristic of Fe3+ ions, which are present as hematite in the jasper sample. The intensity of the resonance signal becomes dominant at elevated temperatures at ≥873 K, masking g ≈ 4.3 and g ≈ 14.0 resonance signals. The EPR spectra of jasper heat-treated at 673 K have been recorded at temperatures between 123 and 296 K. The population of spin levels (N) has been calculated for the broad g ≈ 2.0 resonance signal. It is found that N decreases with decreasing temperature. The linewidth (ΔH) of g ≈ 2.0 resonance signal of the heat-treated jasper is found to increase with decreasing temperature. This has been attributed to spin–spin interaction of the Fe3+ ions present in the form of hematite in the studied jasper sample.  相似文献   
2.
Nonlocal fluxes and Stokes drift effects in the K-profile parameterization   总被引:2,自引:0,他引:2  
 The K-profile parameterization of upper-ocean mixing is tested and extended using observations and large eddy simulations of upper-ocean response to a westerly windburst. A nonlocal momentum flux term is added, and the amplitude of the nonlocal scalar flux is recalibrated. Parameterizations of Stokes drift effects are added following recent work by McWilliams and Sullivan (2001). These changes allow the parameterization to produce both realistic gradients of momentum and scalars in the nocturnal boundary layer and enhanced mixing during stable conditions. The revised parameterization is expected to produce improved representations of lateral advection and sea-surface temperature in large-scale models. Received: 31 August 2001 / Accepted: 15 December 2001  相似文献   
3.
In this review paper, state-of-the-art observational and numerical modeling methods for small scale turbulence and mixing with applications to coastal oceans are presented in one context. Unresolved dynamics and remaining problems of field observations and numerical simulations are reviewed on the basis of the approach that modern process-oriented studies should be based on both observations and models. First of all, the basic dynamics of surface and bottom boundary layers as well as intermediate stratified regimes including the interaction of turbulence and internal waves are briefly discussed. Then, an overview is given on just established or recently emerging mechanical, acoustic and optical observational techniques. Microstructure shear probes although developed already in the 1970s have only recently become reliable commercial products. Specifically under surface waves turbulence measurements are difficult due to the necessary decomposition of waves and turbulence. The methods to apply Acoustic Doppler Current Profilers (ADCPs) for estimations of Reynolds stresses, turbulence kinetic energy and dissipation rates are under further development. Finally, applications of well-established turbulence resolving particle image velocimetry (PIV) to the dynamics of the bottom boundary layer are presented. As counterpart to the field methods the state-of-the-art in numerical modeling in coastal seas is presented. This includes the application of the Large Eddy Simulation (LES) method to shallow water Langmuir Circulation (LC) and to stratified flow over a topographic obstacle. Furthermore, statistical turbulence closure methods as well as empirical turbulence parameterizations and their applicability to coastal ocean turbulence and mixing are discussed. Specific problems related to the combined wave-current bottom boundary layer are discussed. Finally, two coastal modeling sensitivity studies are presented as applications, a two-dimensional study of upwelling and downwelling and a three-dimensional study for a marginal sea scenario (Baltic Sea). It is concluded that the discussed methods need further refinements specifically to account for the complex dynamics associated with the presence of surface and internal waves.  相似文献   
4.

Marine bioluminescence is a unique phenomenon and widely studied around the world. However, information on bioluminescence is scarce in the Indian ocean. This study was carried out to understand the spatial and temporal variations in planktonic bioluminescence off the south coast and the Puttalm Lagoon of Sri Lanka. Planktonic bioluminescence intensity, zooplankton samples, water samples and oceanographic data were collected from sampling sites from January to December 2016 in three month intervals. Time series data were collected at a fixed sampling station, off the south coast of Sri Lanka, in order to understand the variation of bioluminescence intensity throughout the night and with respect to monsoon winds. Bioluminescence intensity was measured using the recoverable bathyphotometer and zooplankton samples were collected using WP-2 net with a 180 μm mesh size plankton net. The results revealed that most of the bioluminescence intensity peaks in the ocean were concentrated in the mixed layer depth zone. Bioluminescence and Chlorophyll profiles indicate the presence of both heterotrophic and autotrophic planktonic bioluminescence. Fixed station analysis showed variations in planktonic bioluminescence throughout the night and with respect to monsoon winds. Twenty two surface bioluminescent zooplankton species belonging to 15 families and 4 phyla were identified during this study. Variations in planktonic bioluminescence with respect to time and sampling locations were evident. The current study yielded encouraging results that should lead to further identification of planktonic distribution near Sri Lanka and key bioluminescent zooplankton in the region.

  相似文献   
5.
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号