首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
地球物理   18篇
地质学   5篇
天文学   3篇
自然地理   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   
2.
The interaction of traveling fast solar shock waves with other fast shock waves generated previously is considered in terms of magnetohydrodynamics for various solar wind parameters. The shocks are not piston ones and move freely in the flow. The magnetic structure in the interplanetary magnetic field emerging after the shock interaction is shown to correspond to the well-known magnetic configuration commonly observed on spacecraft or the classical Hundhausen R model. A head-on collision of solar shock waves with the boundary of a magnetic cloud is considered. It is pointed out that a slow shockwave refracted into the magnetic cloud can appear at an oblique collision of the shock with the cloud boundary. The results clarify our understanding of the available spacecraft data.  相似文献   
3.
Active faults play the key role in the formation of the morphological structures and control the seismicity in the Olekma-Stanovoi seismic zone. The detailed geological-structural and morphotectonic studies of fault zones made it possible to estimate the kinematics of the active faults and their activity degree in the Holocene (the last 10 000 years). The latter include old faults such as, for example, the Stanovoi Suture of the Proterozoic age. Most of these faults are the Late Mesozoic and Cenozoic in age. The studies were aimed at reconstructing the past seismogeological processes and were accompanied by trenching across morphological structures that are presumably associated with zones of active tectonic fractures preliminarily studied by geophysical methods. The applied approach allowed us to substantially specify the available information on the seismotectonics and the potential seismic hazard in the region.  相似文献   
4.
The Gunzhin system of NE-trending active faults is described on the basis of results of special seis-motectonic studies carried out for the first time around Ulan Bator, Mongolia. This system crosses watershed parts of stream valley. It is named after one of them. The total length of the fault segment traced on aerial photos is 15–20 km. In valleys of some temporary stream flows there are considerable visible horizontal displacements attaining 20–25 m, which testify to the right lateral slip (Khundullun River). Revealed structural parageneses of thrusts and overthrusts, divergent as a fan-shaped system to the both sides from the axial sub-vertical shift zone, are reliably confirmed by the data of geophysical investigations. Taking into account the known correlation relationships between seismodislocation parameters (length and maximum displacement amplitude) and earthquake magnitudes, it is possible to suggest that the Gunzhin Fault generated two paleoearthquakes with the magnitude of about 7.0 in the Late Holocene. It means that displacements along that fault could attain the intensity of 9–10 degrees in the Ulan Bator territory according to the MSK-64 scale. This result must be taken into account in estimation of seismic hazard in the territory discussed.  相似文献   
5.
M·V·罗蒙诺索夫金刚石矿床位于阿尔罕格尔斯克金伯利岩省之内,地处东欧地台、波罗的海地盾和俄罗斯地台与文德—寒武纪活化的阿尔罕格尔构造带交接的部位。据K Ar法定年,该矿床形成时代为(355±10)Ma,其它地质证据亦表明金伯利岩岩体形成时代介于上泥盆纪和中石炭纪之间。该矿床可划分出4个金伯利岩田,即Zolotitskoye,Kepinskoye,Verhotin skoye和Melskoye。按照深度,该床存在两类岩相,即火山角砾岩筒相和火山口相。两类岩相所产出的岩石类型有所不同,深度不同、蚀变类型也不同。金伯利岩矿物成分主要为金云母、铬尖晶石、铬透辉石、石榴子石和镁钛铁矿等。该矿床的金刚石晶体有不同形态,但以菱形十二面体最为常见,当粒度小于05mm时,八面体形态金刚石增多,但无经济价值。在阿尔罕格尔岩省找到M·V·罗蒙诺索夫矿床是20世纪的一大发现,它的金伯利岩成分稳定,内部构造相对简单并含有大量宝石级的金刚石。  相似文献   
6.
The paper presents the modern structural-tectonic pattern and a tectonodynamic model of the zone of interaction of the most seismically active northeastern side of the Baikal rift zone (BRZ) and the conjugate system of seismogenic structures of the Aldan-Stanovoy block, where disastrous events with M ≥ 6.0 have been reported. Regularities in the structural formation of active faults and their kinematics are discussed. The faults form block structures accumulating significant tectonic strain. Motions between large tectonic blocks cause sudden release of the strain, which results in catastrophic events (M ≥ 6.0) with focal mechanisms of definite kinematic type.  相似文献   
7.
Variation in the geochemical characteristics of basalts has been found within the Karymskii Volcanic Center (KVC). The concentrations of potassium, titanium, phosphorus, large-cation, high-charge, rare and rare-earth elements increase from the frontal zone (Pribrezhnyi Yuzhnyi, Stena, Paleo-Semyachik and Malyi Semyachik, and Ditmara volcanoes) toward the backarc zone (Odnobokii, Pra-Karymskii, and Akademii Nauk volcanoes). High ratios of fluid-mobile elements to non-mobile ones in the basalts of the frontal zone provide evidence of low-temperature aqueous fluids being involved in magma generation, with these fluids separating from the subducted oceanic plate at low pressures. The backarc zone typically shows higher Th/Nd and Th/Yb ratios, suggesting high-temperature fluids that take part in magma generation with increasing depth (and increasing temperature) as far down as the top of the subducted plate. The variation in the geochemical characteristics of the KVC basalts from the frontal to the backarc zone is less pronounced than that in the lavas of Mutnovskii and Gorelyi volcanoes in southern Kamchatka. These differences may be related to the geodynamic parameters of the subduction zone in the East Kamchatka and the South Kamchatka segments of the Kamchatka island arc, primarily to the dip angle of the Benioff zone, the distance to the trench axis, the subduction age, and possibly to heterogeneities in the mantle wedge beneath the KVC.  相似文献   
8.
This paper is concerned with the petrology and geochemistry of rocks found in the Karymskii Volcanic Center (KVC), which is the largest volcanic center in the Eastern volcanic belt of Kamchatka. The KVC has been built in a rhythmic manner since the Late Pliocene, forming successive differentiated rock complexes. The pattern of variation for major and minor elements in the KVC volcanic rocks can be explained by the fractionation of mineral phases from the parent melt. The process involved enrichment of the residual melts with alkalis and lithophile elements (Rb, Ba, Sr, Pb, Th, U, REE), as well as depletion in coherent elements (Ni, Cr, Sc, Ti). A geochemical study of the KVC volcanic rocks shows that these are typical island arc formations. The relationships between incompatible elements suggest a two-component magma generation system: a depleted mantle source (N-MORB) and suprasubduction fluids (an island arc component). The melt may have been contaminated by a metasomatically altered substratum in the top of the intermediate chamber with added crystalline cumulus phases (and melts) of the earlier magma generation phases in the KVC.  相似文献   
9.
Based on the WIND and GOES satellite data on the solar wind and IMF parameters and the data on the surface magnetic field, it has been indicated that the secondary MHD rarefaction wave can affect the geomagnetic field during a storm sudden commencement (SSC) event. The secondary rarefaction wave originates in the magnetosheath when the shock wave interacts with the Earth’s magnetosphere.  相似文献   
10.
We use analytical methods of magnetohydrodynamics to describe the behavior of cosmic plasma. This approach makes it possible to describe different structural fields of disturbances in solar wind: shock waves, direction discontinuities, magnetic clouds and magnetic holes, and their interaction with each other and with the Earth’s magnetosphere. We note that the wave problems of solar–terrestrial physics can be efficiently solved by the methods designed for solving classical problems of mathematical physics. We find that the generalized Riemann solution particularly simplifies the consideration of secondary waves in the magnetosheath and makes it possible to describe in detail the classical solutions of boundary value problems. We consider the appearance of a fast compression wave in the Earth’s magnetosheath, which is reflected from the magnetosphere and can nonlinearly overturn to generate a back shock wave. We propose a new mechanism for the formation of a plateau with protons of increased density and a magnetic field trough in the magnetosheath due to slow secondary shock waves. Most of our findings are confirmed by direct observations conducted on spacecrafts (WIND, ACE, Geotail, Voyager-2, SDO and others).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号