首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  国内免费   2篇
大气科学   14篇
地球物理   8篇
地质学   10篇
海洋学   1篇
天文学   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   
2.
We report results from the highest-resolution simulations of global warming yet performed with an atmospheric general circulation model. We compare the climatic response to increased greenhouse gases of the National Center for Atmospheric Research (NCAR) climate model, CCM3, at T42 and T170 resolutions (horizontal grid spacing of 300 and 75 km respectively). All simulations use prescribed sea surface temperatures (SST). Simulations of the climate of 2100 ad use SSTs based on those from NCAR coupled model, Climate System Model (CSM). We find that the global climate sensitivity and large-scale patterns of climate change are similar at T42 and T170. However, there are important regional scale differences that arise due to better representation of topography and other factors at high resolution. Caution should be exercised in interpreting specific features in our results both because we have performed climate simulations using a single atmospheric general circulation model and because we used with prescribed sea surface temperatures rather than interactive ocean and sea-ice models.  相似文献   
3.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   
4.
5.
IUE has made very successful long term and intense short time-scale monitoring spectroscopic study of NGC 4151, a Seyfert 1 galaxy for over nearly 18 years from its launch in 1978 to 1996. The long-term observations have been useful in understanding the complex relation between UV continuum and emission line variability Seyfert galaxies. In this paper, we present the results of our studies on the short-timescale intense monitoring campaign of NGC 4151 undertaken during December 1–15, 1993. A most intense monitoring observation of NGC 4151 was carried out by IUE in 1993, when the source was at its historical high flux state with a shortest interval of 70 min between two successive observations. We present our results on emission line and continuum variability amplitudes characterized by \(F_{\mathrm{var}}\) method. We found highest variability of nearly 8.3% at 1325 \(\AA \) continuum with a smallest amplitude of 4% at 2725 \(\AA \). The relative variability amplitudes (\(R_\mathrm{max}\)) have been found to be 1.372, 1.319, 1.302 and 1.182 at 1325, 1475, 1655 and 2725 \(\AA \) continuum respectively. The continuum and emission line variability characteristics obtained in the present analysis are in very good agreement with the results obtained by Edelson et al. (1996) and Crenshaw et al. (1996) from the analysis of the same observational spectral data. The large amplitude rapid variability characteristics obtained in our study have been attributed to the continuum reprocessing of X-rays absorbed by the material in the accretion disk as proposed by Shakura and Sunyaev (1973). The continuum and emission light curves have shown four distinct high amplitude events of flux maxima during the intense monitoring campaign of 15 days, providing a good limit on the amplitude of UV variability and the BLR size in low luminosity Seyfert galaxies and are useful for constraining the continuum emission models. The decreasing \(F_{\mathrm{var}}\) amplitude of UV continuum with respect to increasing wavelength obtained in the present study and consistent with similar observations by Edelson et al. (1996) and Crenshaw et al. (1996) is a significant result of the intense monitoring observations.  相似文献   
6.
Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between \(\pm 20^{\circ }\) latitudes. In this period, more number of recurring coronal holes appeared in and around \(100^{\circ }\) and \(200^{\circ }\) Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area \(<10^{21}~\mbox{cm}^{2}\) appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between \(\pm 60^{\circ }\) latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.  相似文献   
7.
The thermodynamical and microphysical characteristics of monsoon clouds in the Poona, Bombay and Rihand regions were investigated using extensive aircraft in-cloud observations. The number of clouds sampled at Poona, Bombay and Rihand is 2199, 169 and 104 respectively. The temperatures inside the cloud are colder than its environment at Poona and Rihand. The maximum difference is about 3°C at the cloud base level and the difference decreased with height. At Bombay the difference is less than 1°C and at some levels the temperatures inside the cloud are warmer than its environment. The lapse rates of temperatures inside the cloud are slightly less than those in the immediate environment of the cloud. The environmental lapse rates are nearly equal to the saturated adiabatic value. The positive increments in liquid water content (LWC) are associated with the increments in temperature inside the cloud. Similarly positive increments in temperatures inside the cloud are associated with the increments in temperature of its immediate environment at the same level or the layer immediately above. The maximum cloud lengths observed at Poona and Bombay respectively are 14 and 3 km. The horizontal cross-section of LWC showed a maximum number of 13 peaks in clouds at Poona while only 7 peaks were observed at Bombay. The location of maximum LWC in the horizontal cross-section is more or less at the centre of the cloud. The LWC profile showed an increase with height from the base of the cloud at Poona and Bombay. There is no marked variation of LWC with height at Rihand. The total droplet concentration at different altitudes at Poona and Bombay is in the range 28–82 cm?3. The size distribution of cloud droplets experienced a broadening effect with increase in height from the cloud base at Poona. The broadening effect at Bombay is not as marked as that at Poona.  相似文献   
8.
Recent studies have shown that changes in global mean precipitation are larger for solar forcing than for CO2 forcing of similar magnitude. In this paper, we use an atmospheric general circulation model to show that the differences originate from differing fast responses of the climate system. We estimate the adjusted radiative forcing and fast response using Hansen’s “fixed-SST forcing” method. Total climate system response is calculated using mixed layer simulations using the same model. Our analysis shows that the fast response is almost 40% of the total response for few key variables like precipitation and evaporation. We further demonstrate that the hydrologic sensitivity, defined as the change in global mean precipitation per unit warming, is the same for the two forcings when the fast responses are excluded from the definition of hydrologic sensitivity, suggesting that the slow response (feedback) of the hydrological cycle is independent of the forcing mechanism. Based on our results, we recommend that the fast and slow response be compared separately in multi-model intercomparisons to discover and understand robust responses in hydrologic cycle. The significance of this study to geoengineering is discussed.  相似文献   
9.
10.
Altitude profile of aerosol Single Scattering Albedo (SSA), derived from simultaneous in-situ airborne measurements of the coefficients of aerosol absorption and scattering off the west coast of India over the Arabian Sea (AS), during January 2009 is presented. While both the absorption and scattering coefficients decreased with altitude, their vertical structure differed significantly. Consequently, the derived SSA, with a surface value of 0.94, decreased with altitude, illustrating increasing relative dominance of aerosol absorption at higher altitudes. Altitude profile of SSA, when examined in conjunction with that of hemispheric backscatter fraction, revealed that the continental influence on the aerosol properties was higher at higher altitude, rather than the effect of marine environment. During an east–west transect across the peninsular India at an altitude of ~2500 m (free troposphere), it was found that the aerosol scattering coefficients remained nearly the same over both east and west coasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号