首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   3篇
地质学   7篇
  2021年   1篇
  2018年   2篇
  2012年   2篇
  2008年   2篇
  2005年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
Agro-industrial wastewaters are known by high strength of organic pollutants that cause an adverse effect on the water bodies. Wastewater management becomes a major task, leads environmental regulations to be stricter worldwide. Increased disposal of untreated/partially treated industrial wastewaters are major environmental problems in Ethiopia. In Ethiopia, industries most commonly dispose their untreated wastewater straight into the nearby rivers. Somewhat, constructed wetlands are used by some industries for treatment of wastewaters. The objective of this review paper was to summarize the characteristics and recent research efforts done on anaerobic treatment of some selected agro-industrial wastewaters and innovative technologies used for cogeneration of byproducts. Many developed countries designed cost effective approaches for agro-industrial wastewater management. The full-scale anaerobic treatment system in China generates 40,000 m3 biogas daily for 20,000 households from agro-industrial wastes. Likewise, the Brewery, Addis Ababa, Ethiopia used full-scale anaerobic treatment technology and produce average methane yield of 487 Nm3/day. The estimated maximum methane production potential of Kera, Luna slaughterhouses, and Ada milk factory were 4.5599LCH4, 0.1878LCH4, and 0.9952LCH4, respectively. These indicate that they can be potential sources of biogas production. Limitations of the brewery are burning of the produced energy and some quantified parameters being become above national standards while meat processing and diary industries are discharging their wastewater without treatment into the rivers. We devised the brewery to use the produced energy properly and extend its treatment to achieve the national standards using integrated sequencing batch reactor. Similarly, slaughterhouse and diary industries should install anaerobic–aerobic integrated treatment techniques.  相似文献   
3.
The Were Ilu ignimbrites are unlike other Oligocene rhyolites from the Ethiopian continental flood basalt province, in that they consist of plagioclase (An19–54), augite, pigeonite and Ti-magnetite, instead of anorthoclase, sodic sanidine, aegirine-augite and ilmenite. The minerals occur as (micro-)phenocrysts isolated within a glassy matrix or forming gabbroic and dioritic cumulophyric clots. Plagioclase is partially re-melted (sieve-textures with infilling glass). It is zoned with sudden changes in composition. However, the bulk zoning is normal with An-rich core (An45–54) and more sodic rim (An19–28). Ba and Sr concentration profiles of two plagioclase phenocrysts show a bulk rimward increase with compositions ranging from 250 ppm to 1,060 ppm and from 400 ppm to 1,590 ppm, respectively. The matrix glass has low CaO content (0.1–0.5 wt.%), a peralkalinity index of 0.79–1.04 and average Sr and Ba contents of 48±22 and 525±129 ppm, respectively. Geochemical modelling of Ba and Sr zoning profiles of plagioclase, based on experimental constraints, suggests that the cumulophyric clots can be derived from fractional crystallisation associated with limited assimilation (8 wt.%) from melts slightly less evolved than their rhyolitic matrix glass. These clots are not witnesses of intermediate magmas allowing the Daly Gap to be filled, but are cumulates differentiated from rhyodacitic melt. This indicates that parental magmas were stored in crustal magma chambers where they differentiated before being erupted at the surface.  相似文献   
4.
Peralkaline magma evolution and the tephra record in the Ethiopian Rift   总被引:3,自引:3,他引:0  
The 3.119 ± 0.010 Ma Chefe Donsa phreatomagmatic deposits on the shoulder of the Ethiopian Rift mark the northern termination of the Silti-Debre Zeyit Fault Zone, a linear zone of focused extension within the modern Ethiopian Rift. These peralkaline pumice fragments and glass shards span a wide range of glass compositions but have a restricted phenocryst assemblage dominated by unzoned sanidine. Glass shards found within the ash occupy a far more limited compositional range (75–76 wt% SiO2) in comparison with the pumice (64–75 wt% SiO2), which is rarely mingled. Thermodynamic modeling shows that liquids broadly similar to the least evolved glass composition can be achieved with 50–60 % fractionation of moderately crustally contaminated basalt. Inconsistencies between modeled solutions and the observed values of CaO and P2O5 highlight the important role of fluorine in stabilizing fluor-apatite and the limitations of current thermodynamic models largely resulting from the scarce experimental data available for the role of fluorine in igneous phase stability. On the basis of limited feldspar heterogeneity and crystal content of pumice at Chefe Donsa, and the difficulties of extracting small volumes of Si-rich melt in classical fractional crystallization models, we suggest a two-step polybaric process: (1) basaltic magma ponds at mid-upper-crustal depths and fractionates to form a crystal/magma mush. Once this mush has reached 50–60 % crystallinity, the interstitial liquid may be extracted from the rigid crystal framework. The trachytic magma extracted at this step is equivalent to the most primitive pumice analyzed at Chefe Donsa. (2) The extracted trachytic liquid will rise and continue to crystallize, generating a second mush zone from which rhyolite liquids may be extracted. Some of the compositional range observed in the Chefe Donsa deposits may result from the fresh intrusion of trachyte magma, which may also provide an eruption trigger. This model may have wider application in understanding the origin of the Daly Gap in Ethiopian magmas—intermediate liquids may not be extracted from crystal-liquid mushes due to insufficient crystallization to yield a rigid framework. The wide range of glass compositions characteristic of the proximal Chefe Donsa deposits is not recorded in temporally equivalent tephra deposits located in regional depocenters. Our results show that glass shards, which represent the material most likely transported to distal depocenters, occupy a limited compositional range at high SiO2 values and overlap some distal tephra deposits. These results suggest that distal tephra deposits may not faithfully record the potentially wide range in magma compositions present in a magmatic system just prior to eruption and that robust distal–proximal tephra correlations must include a careful analysis of the full range of materials in the proximal deposit.  相似文献   
5.
The Ethiopian continental flood basalt (CFB) province (∼30 Ma, > 3 × 105 km3) was formed as the result of the impingement of the Afar mantle plume beneath the Ethiopian lithosphere. This province includes major sequences of rhyolitic ignimbrites generally found on top of the flood basalt sequence. Their volume is estimated to be at least 6 × 104km3, which represents 20% of that of the trap basalts. Their phenocryst assemblage (alkali feldspar, quartz, aegyrine-augite, ilmenite ± Ti-magnetite, richterite, and eckermanite) suggests temperatures in the range of 740 to 900°C. Four units were recognized in the field (Wegel Tena, Jima, Lima Limo, and Debre Birhan areas), each with its own geochemical specificity. Zr/Nb ratios remain constant between basalt and rhyolite in each area, and rhyolites associated with high-Ti or low-Ti basalts are, respectively, enriched or depleted in titanium. Their trace element and isotope (Sr, Nd, O) signatures (high 143Nd/144Nd and low 87Sr/86Sr ratios, compared to those of rhyolites from other CFB provinces) are clearly different from those of typical crustal melts and indicate that the Ethiopian rhyolites are among the most isotopically primitive rhyolites. Their major and trace element patterns suggest that they are likely to be derived from fractional crystallization of basaltic magmas similar in composition to the exposed flood basalts with only limited crustal contribution. Since Ethiopian high-Ti basalts have been shown to form from melting of a mantle plume, it is likely that Ethiopian ignimbrites, at least those that are Ti-rich, also incorporated material from the deep mantle.Rb-Sr isochrons on whole rocks and mineral separates (30.1 ± 0.4 Ma for Wegel Tena and 30.5 ± 0.4 Ma for Jima ignimbrites) show that most of the silicic volcanism occurred within < 2 Ma during the Oligocene. Ignimbritic eruptions resumed in the Miocene during two episodes dated at 15.4 ± 0.2 Ma and 8.0 ± 0.2 Ma for the Debre Birhan area. The Rb-Sr isochron ages of ignimbrites (both Oligocene and Miocene rhyolites) are indistinguishable within uncertainties from the 40Ar/39Ar ages of the underlying flood basalts. The Oligocene ignimbrites and the underlying trap basalts are synchronous with a shift in the oxygen composition of foraminifera recorded in Indian and Atlantic Ocean cores. The temporal coincidence of Ethiopian Oligocene volcanism, which released immense volumes of S (> 1.4 × 1015 mol) and Cl (6.4 × 1015 mol) into the atmosphere over a short time span, with the global cooling event at 30.3 Ma suggests that this volcanism might have accelerated the climate change that was already underway.  相似文献   
6.
Abebe  Gezahegn 《GeoJournal》2021,86(6):2539-2554
GeoJournal - Drawing on evidence from in-depth interviews and a household survey, the paper provides evidence on the farmers’ challenges in production, marketing and prices as well as how...  相似文献   
7.
A variety of methods exist to constrain sub-volcanic storage conditions of magmas. Petrological, seismological and satellite geodetic methods are integrated to determine storage conditions of peralkaline magmas beneath Dabbahu Volcano, Afar, Ethiopia. Secondary ion mass spectrometry (SIMS) analysis of volatile contents in melt inclusions trapped within phenocrysts of alkali feldspar, clinopyroxene and olivine from pantellerite obsidians representing the youngest eruptive phase (<8?ka) show H2O contents ≤5.8?wt.% and CO2 contents generally below 500?ppm, although rarely as high as 1,500 ppm. Volatile saturation pressures (at 679–835°C) are in the range 43–207?MPa, consistent with published experimental data for similar pantellerites, which show that the phenocryst assemblage of alkali feldspar + cpx + aenigmatite ± ilmenite is stable at 100 to 150?MPa. Inferred magma storage depths for these historic eruptions are ~1–5?km below sea-level, consistent with the depths of earthquakes, associated with magma chamber deflation following a dyke intrusion in the period Oct 2005–Apr 2006. Interferometric synthetic aperture radar (InSAR) data for the same period reveal a broad ~20?km diameter area of uplift. Modelling of different geometries reveals that a series of stacked sills over a 1–5?km depth range best matches the InSAR data. The consistency of depth estimates based on petrological study of ancient eruptions and the seismicity, inflation and deflation of Dabbahu observed in relation to the dyking event of 2005, suggest a small but vertically extensive and potentially long-lived magma storage region.  相似文献   
8.
Here we report measurements of the chemical composition and flux of gas emitted from the central lava lake at Erta 'Ale volcano (Ethiopia) made on 15 October 2005. We determined an average SO2 flux of ∼ 0.69 ± 0.17 kg s− 1 using zenith sky ultraviolet spectroscopy of the plume, and molar proportions of magmatic H2O, CO2, SO2, CO, HCl and HF gases to be 93.58, 3.66, 2.47, 0.06, 0.19 and 0.04%, respectively, by open-path Fourier transform infrared (FTIR) spectrometry. Together, these data imply fluxes of 7.3, 0.7, 0.008, 0.03 and 0.004 kg s− 1 for H2O, CO2, CO, HCl and HF, respectively. These are the first FTIR spectroscopic observations at Erta 'Ale, and are also some of the very few gas measurements made at the volcano since the early 1970s (Gerlach, T.M., 1980b. Investigation of volcanic gas analyses and magma outgassing from Erta 'Ale lava lake, Afar, Ethiopia. Journal of Volcanology and Geothermal Research, 7(3–4): 415–441). We identify significant increases in the proportion of H2O in the plume with respect to both CO2 and SO2 across this 30-year interval, which we attribute to the depletion of volatiles in magma that sourced effusive eruptions during the early 1970s and/or to fractional magma degassing between the two active pit craters located in the summit caldera.  相似文献   
9.
The extensive, complex, continental flood basalt (CFB) province which occurs in Ethiopia and Yemen consists of Oligocene prerift volcanism related to the Africa–Arabia continental break-up. Basalts from the northwestern Ethiopian Plateau exhibit a particularly large range of compositions and, for the first time in the Afro-Arabian CFB province, low-Ti basalts have been encountered. Major and some trace element data have been used to identify distinct geochemical groups and evaluate the role of differentiation processes. Three magma types have been distinguished: two high-Ti groups (HT1 and HT2) and one low-Ti group (LT). The transitional to tholeiitic LT suite exhibits low TiO2 (1–2.6%), Fe2O3* (10.5–14.8%), CaO/Al2O3 (0.4–0.75), Nb/La (0.55–0.85) and high SiO2 (47–51%). In contrast, the HT2 suite exhibits high TiO2 (2.6–5%), Fe2O3* (13.1–14.7%), CaO/Al2O3 (0.9–1.43), Nb/La (1.1–1.4) and low SiO2 (44–48.3%). The HT1 series is intermediate between the LT and HT2 groups. These three groups of lavas originated from different parental magmas. They display distinct differentiation trends, either controlled by the removal of a shallow level gabbroic (Pl+Ol+Cpx) assemblage (LT and HT1 suites) or by deeper Ol+Cpx fractionation (HT2 suite). Most of this thick continental flood lava pile was emplaced over a short time interval (about 1–2 Ma). The three contrasted magma types do not reflect a temporal evolution of their sources but rather a strong spatial control. Indeed, the northwestern Plateau may be subdivided into two different subprovinces as all the low-Ti basalts are located in the northern part of the plateau, and the high-Ti basalts are exposed in the eastern and southern parts. The LT and HT1 basalts display compositional ranges similar to those of the low- and high-Ti groups from other main CFB provinces (e.g. Parana, Deccan, Karoo, Siberia, …). However, the HT2 group exhibits extreme OIB-like compositions. This unusual geochemical signature suggests the involvement of deep mantle in the genesis of the HT2 magmas. The LT compositions rather reflect the participation of the continental lithosphere, through mantle derived melts and/or crustal contamination.  相似文献   
10.
Continental flood basalts (CFBs), thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insights into melt generation processes in large igneous provinces (LIPs). Despite the utility of CFBs in probing mantle plume composition, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of residence within the lithosphere provide additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well-preserved stratigraphic sequence from flood basalt initiation to termination, and is thus an important target for study of CFBs. This study examines modal observations within a stratigraphic framework and places these observations within the context of the magmatic evolution of the Ethiopian CFB province. Data demonstrate multiple pulses of magma recharge punctuated by brief shut-down events, with initial flows fed by magmas that experienced deeper fractionation (lower crust). Broad changes in modal mineralogy and flow cyclicity are consistent with fluctuating changes in magmatic flux through a complex plumbing system, indicating pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. The composition of plagioclase megacrysts suggests a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of volcanism, reaching an apex prior to flood basalt termination. The petrostratigraphic data sets presented in this paper provide new insight into the evolution of a magma plumbing system in a CFB province.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号