首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   7篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Flash floods are responsible for loss of life and considerable property damage in many countries.Flood susceptibility maps contribute to flood risk reduction in areas that are prone to this hazard if appropriately used by landuse planners and emergency managers.The main objective of this study is to prepare an accurate flood susceptibility map for the Haraz watershed in Iran using a novel modeling approach(DBPGA) based on Deep Belief Network(DBN) with Back Propagation(BP) algorithm optimized by the Genetic Algorithm(GA).For this task, a database comprising ten conditioning factors and 194 flood locations was created using the One-R Attribute Evaluation(ORAE) technique.Various well-known machine learning and optimization algorithms were used as benchmarks to compare the prediction accuracy of the proposed model.Statistical metrics include sensitivity,specificity accuracy, root mean square error(RMSE), and area under the receiver operatic characteristic curve(AUC) were used to assess the validity of the proposed model.The result shows that the proposed model has the highest goodness-of-fit(AUC = 0.989) and prediction accuracy(AUC = 0.985), and based on the validation dataset it outperforms benchmark models including LR(0.885), LMT(0.934), BLR(0.936), ADT(0.976), NBT(0.974), REPTree(0.811), ANFIS-BAT(0.944), ANFIS-CA(0.921), ANFIS-IWO(0.939), ANFIS-ICA(0.947), and ANFIS-FA(0.917).We conclude that the DBPGA model is an excellent alternative tool for predicting flash flood susceptibility for other regions prone to flash floods.  相似文献   
2.
Large, rapid, low-gradient landslides are common in clay-rich glacial sediments in northeastern British Columbia. Many of the landslides create upstream impoundments that may persist for years in small watersheds in the region. We have documented such events in the Halden Creek watershed, 60 km southeast of Fort Nelson. The events are recorded geologically in two ways. First, trees are drowned in lakes dammed by the landslides and subsequently buried by deltaic sediments, where they are protected from decay. Bank erosion later exhumes the drowned trees. Second, landslide deposits with entrained wood are exposed along stream banks. We have reconstructed the recent history of landslide damming at Halden Creek by performing radiocarbon dating on exhumed trees and wood in and beneath landslide deposits at 13 sites in the watershed. Drowned trees range in age from 169±59 to 274±49 14C year bp. Wood in and below landslide deposits yielded radiocarbon ages ranging from modern to 965±49 14C year bp.  相似文献   
3.
The Todagin Creek landslide is located at 57.61° N 129.98° W in Northwest British Columbia. A seismic station 90 km north of the landslide recorded the event at 1643 hours coordinated universal time (UTC; 0943 hours Pacific daylight time (PDT)) on October 3, 2006. The signal verifies the discovery and relative time bounds provided by a hunting party in the valley. The landslide initiated as a translational rock slide on sedimentary rock dipping down slope at 34° and striking parallel to the valley. The landslide transformed into a debris avalanche and had a total volume estimated at 4 Mm3. An elevation drop of 771 m along a planar length of 1,885 m resulted in a travel angle (fahrb?schung) of 21.3°. The narrowest part of the landslide through the transport zone is 345 m. The widest part of the divergent toe of the landslide reaches a width of 1,010 m. Landslide debris impounded a lake of approximately 32 ha and destroyed an additional 67 ha of forest. The impoundment took 7 to 10 days to fill, with muddied waters observed downstream on October 13. No clear linkage exists with precipitation and temperature records preceding the landslide, but strong diurnal temperature cycles occurred in the days prior to the event. The Todagin Creek area appears to have an affinity for large landslides with the deposits of three other landslides >5 Mm3 observed in the valley.  相似文献   
4.
Landslides impacting linear infrastructure in west central British Columbia   总被引:3,自引:2,他引:1  
Destructive landslides are common in west central British Columbia. Landslides include debris flows and slides, earth flows and flowslides, rock falls, slides, and avalanches, and complex landslides involving both rock and soil. Pipelines, hydrotransmission lines, roads, and railways have all been impacted by these landslides, disrupting service to communities. We provide examples of the destructive landslides, their impacts, and the climatic conditions associated with the failures. We also consider future landsliding potential for west central British Columbia under climate change scenarios.  相似文献   
5.
In this study, high resolution surface measurements of diverse slope movements are compared to environmental factors such as ground surface temperature (GST) and snow cover, in order to reveal and compare velocity fluctuations caused by changing environmental conditions. The data cover 2 years (2011–2013) of Global Positioning System (GPS) and GST measurements at 18 locations on various slope movement types within an alpine study site in permafrost (Mattertal, Switzerland). Velocities have been estimated based on accurate daily GPS solutions. The mean annual velocities (MAV) observed at all GPS stations varied between 0.006 and 6.3 ma?1. MAV were higher in the period 2013 compared to 2012 at all stations. The acceleration in 2013 was accompanied by a longer duration of the snow cover and zero curtain and slightly lower GST. The amplitude (0–600 %) and the timing of the intra-annual variability were generally similar in both periods. At most stations, an annual cycle in the movement signal was observed, with a phase lag of 1–4 months to GST. Maximum velocity typically occurred in late summer and autumn, and minimum velocity in late winter and beginning of spring. The onset of acceleration always started in spring during the snowmelt period. At two stations located on steep rock glacier tongues, overprinted on the annual cycle, short-term peaks of velocity increase, occurred during the snowmelt period, indicating a strong influence of meltwater.  相似文献   
6.
7.
Land management associated with forest practices in British Columbia (BC) over the last three decades has led to the development of terrain stability hazard mapping. Terrain stability mapping (TSM) in BC originated in the early 1970s, when forest harvesting was progressing from valley bottoms onto steep, unstable terrain, which led to an increase in harvesting- and road-related landslides. Since then TSM methods have been evolved. Beginning in the early 1970s, terrain hazards were incorporated into the forest inventory classification system to delineate environmentally sensitive areas for land-use planning. By 1974, operational terrain stability maps were introduced by the MacMillan Bloedel forest company on the Queen Charlotte Islands. In the 1980s, this method was adopted by other forest companies and government agencies along the BC coast and then extended to the BC interior in the 1990s. The system was refined over time, based on new knowledge and on the introduction of mapping standards, including standards for capture and presentation of digital maps. In 1995, reconnaissance terrain stability mapping and detailed terrain stability mapping were formalized with three and five hazard classes, respectively. More recently, qualitative and semi-quantitative approaches to predict landslide occurrence based on terrain and landslide inventories have been incorporated into the techniques for TSM.  相似文献   
8.
On November 28, 2003, at about 00:30 PST, 35 km east of Prince Rupert in northwestern British Columbia, an extremely rapid, retrogressive liquefaction earth flow, or a clay flow-slide, severed the natural gas pipeline. As a result, Prince Rupert residents were without natural gas heat for 10 days. The landslide has a steep main scarp that is 45 m high by 345 m wide. It consists of glaciomarine sediments mantled by rubbly colluvium lying on, and against smooth bedrock of the valley wall. It covers an area of 32 ha, and displaced about 4.7 M m3 of material. This displaced material flowed up and down river over a distance of 1.7 km, blocked the river, and caused flooding upstream for a distance of 10 km. This landslide is the most recent of four large landslides that have occurred over the last four decades in glaciomarine sediments in northwestern British Columbia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号