首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
测绘学   6篇
大气科学   3篇
地球物理   7篇
地质学   3篇
海洋学   4篇
天文学   3篇
自然地理   1篇
  2024年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2009年   2篇
  2006年   1篇
  2004年   2篇
  1999年   1篇
  1995年   1篇
  1988年   2篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
The impact of climate change on Arctic rivers is expected to be severe. There is therefore a need for greater understanding of Arctic river temperature processes. This study quantifies the spatio-temporal variability of water temperatures in the Kårsa River, Sweden. Water temperature was monitored over two summers within the main proglacial channel and within braids fed by different sources. Longitudinal and lateral temperature patterns were assessed in relation to prevailing hydro-meteorology. Temperature metrics in the main channel increased with distance downstream but were moderated by a large lake, while temperatures in the braids were dependent upon channel source. The high temperature standard deviation and inter-site differences within the braids highlight the importance of braided channels for creating thermal habitat heterogeneity. Temperatures were dependent on hydro-meteorological conditions, with sensitivity to air temperature maximized during cooler, rainy conditions. These results shed new light on Arctic river temperature patterns and their controlling processes.  相似文献   
2.
The seasonal range of sea temperature on the New Zealand shelf   总被引:1,自引:1,他引:0  
Sea water temperatures measured over the New Zealand continental shelf in summer and winter 1967 are compared and discussed.  相似文献   
3.
4.
5.
Configuration of major sound channels in the ocean around New Zealand is derived from the temperature and salinity data available from the region between latitudes 28°S and 56°S and between 158°E and 174°W. The “SOFAR channel” is established throughout the area northwards of the Antarctic Convergence, with its axis in a depth of about 1,300 m. Little variation in the depth of this axis was found except in the southern part of the subantarctie zone, where the weak vertical temperature stratification cannot maintain a velocity minimum; the axis of the SOFAR channel tends to decrease in depth as it loses its identity. In the northern part of the subantarctie region, a second channel was found at a depth of about 100 m. The depth of the axis of this “subantarctie channel” increases to about 500 m under the surface outcrop of the Subtropical Convergence. It loses its identity at about 400 m in the stronger vertical temperature stratification of the subtropical region. To the south of the Antarctic Convergence, an “antarctic channel” was found with its axis at a depth of some 400 m in a temperature inversion between Antarctic Winter Water and the underlying Pacific Deep Water.

Sound velocity on the surfaces defined by the channel axes is mapped. A ridge of maximum SOFAR velocity is defined extending east and west of the northern part of New Zealand. This feature does not seem to appear in the north Pacific and has been tentatively associated with the dynamics of east‐flowing subtropical currents in this region.  相似文献   
6.
Several problems are encountered when collecting traffic information by conventional methods and which leave scope for the development of more comprehensive techniques. This paper reviews the potential of different types of photography as an effective means of obtaining comprehensive traffic information. Comparisons between conventional methods and photographic methods are made. The different types of available photography are discussed, together with their uses in the field of traffic data acquisition. Finally, the paper assesses the use of automatic and semiautomatic methods of photographic data analysis in this context.  相似文献   
7.
8.
9.
10.
At the Low-Frequency Array (LOFAR)(Planet. Space Sci. (2004) these proceedings) frequencies (HF/VHF), extraterrestrial radiation experiences substantial propagation delay as it passes through the ionosphere. The adaptive calibration technique to be employed by LOFAR will use signals from many known bright radio sources in the sky to estimate and remove the effects of this delay. This technique will operate along many simultaneous lines of sight for each of the stations. Measurements will be made on time scales of seconds or shorter, and with accuracies corresponding to path length variations of 1 cm or less. Tomographic techniques can be used to invert the thousands of changing and independent total electron content (TEC) measurements produced by LOFAR into three-dimensional electron density specifications above the array. These specifications will measure spatial and time scales significantly smaller and faster than anything currently available. These specifications will be used to investigate small-scale ionospheric irregularities, equatorial plasma structures, and ionospheric waves. In addition, LOFAR will improve the understanding of the solar drivers of the ionosphere by simultaneously measuring the solar radio bursts and the TEC. Finally, LOFAR, which will be situated to observed the galactic plane, will make continuous, high-resolution observations of the low-latitude ionosphere, an important but under-observed region. This paper will look at LOFAR as an ionospheric probe including comparisons to other ionospheric probes as well as possible methods of operation to optimize ionospheric measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号