首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   1篇
  国内免费   1篇
测绘学   3篇
大气科学   14篇
地球物理   14篇
地质学   26篇
海洋学   11篇
天文学   3篇
自然地理   13篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   9篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1969年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
1.
Hydration of organic coatings in soils is expected to affect the sorption of oxyanions onto hydrous Fe and Al oxides. We hypothesized that the hydration of polygalacturonate (PGA) coatings on alumina (Al2O3) increases their permeability for phosphate. Pure and PGA-coated alumina were equilibrated in deionized water for 2 and 170 h at pH 5 and 20 °C before studying (i) their porosity with N2 gas adsorption and 1H NMR relaxometry, (ii) structural changes of PGA-coatings with differential scanning calorimetry (DSC), and (iii) the kinetics of phosphate sorption and PGA desorption in batch experiments. Scanning electron micrographs revealed that PGA molecules formed three-dimensional networks with pores ranging in size from <10 to several hundred nanometers. Our NMR results showed that the water content of intraparticle alumina pores decreased upon PGA sorption, indicating a displacement of pore water by PGA. The amount of water in interparticle alumina pores increased strongly after PGA addition, however, and was attributed to water in pores of PGA and/or in pores at the PGA-alumina interface. The flexibility of PGA molecules and the fraction of a PGA gel phase increased within one week of hydration, implying restructuring of PGA. Hydration of PGA coatings increased the amount of phosphate defined as instantaneously sorbed by 84%, showing that restructuring of PGA enhanced the accessibility of phosphate to external alumina surfaces. Despite the fact that the efficacy of phosphate to displace PGA was higher after 170 h than after 2 h, a higher phosphate surface loading was required after 170 h to set off PGA desorption. Our findings imply that the number of PGA chain segments directly attached to the alumina surface decreased with time. We conclude that hydration/dehydration of polymeric surface coatings affects the sorption kinetics of oxyanions, and may thus control the sorption and transport of solutes in soils.  相似文献   
2.
Arid slopes on the southeastern side of Maui are densely covered with archaeological remains of Hawaiian settlement from the late prehistoric to early postcontact period (ca. A.D. 1500-1860). Permanent habitation sites, agricultural features, and religious structures indicate perennial occupation and farming in a subregion called Kahikinui, yet there is presently no year-round water source. We explore the possibility that postcontact deforestation led to the loss of either (1) perennial channel flow or (2) perennial springs or seeps. To investigate the first possibility, we estimated ancient peak flows on 11 ephemeral channels in Kahikinui using field measurements and paleohydrology. Peak-flow estimates (3-230 m3/s) for a given drainage area are smaller than those for current perennial Maui streams, but are equivalent to gauged peak flows from ephemeral and intermittent streams in the driest regions of Hawai’i and Maui islands. This is consistent with the long-term absence of perennial channel flow in Kahikinui. On the other hand, others have shown that canopy fog-drip in Hawai’i can be greater than rainfall and thus a large part of groundwater recharge. Using isolated live remnants and snags, we estimate the former extent of the forest upstream from archaeological sites. We use rough estimates of the loss of fog-drip recharge caused by deforestation and apply a simple, steady-state hydrologic model to calculate potential groundwater table fall. These order-of-magnitude estimates indicate that groundwater could have fallen by a minimum of several meters, abandoning perennial seeps. This is consistent with archaeological evidence for former perennial seeps, such as stonewalls enclosing potential seeps to protect them. Although longer-term reductions in rainfall cannot be ruled out as a factor, deforestation and loss of fog-drip recharge are obvious and more immediate reasons for a recent loss of perennial water in Kahikinui, Maui.  相似文献   
3.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   
4.
Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.  相似文献   
5.
We carried out a microearthquake survey lasting for six weeks in northwest Greece using 18 portable seismograph stations to examine a region in which normal and thrust faulting have been reported in close proximity to one another. With this array we located 148 events and determined fault plane solutions for eight events using only rays radiated upwards. The seismicity of the region is diffuse with events extending to depths of nearly 30 km, and there is a minimum in activity near a depth of 15 km. The fault plane solutions exhibit a wide spectrum of fault types and orientations and are not consistent with simple zones of shortening or extension. Neither tractions applied to the edges or bottom of the region nor deviatoric stresses that compensate for lateral variations in crustal thickness can account for the variety of fault plane solutions. We think that the complicated behavior is a manifestation of inhomogeneous deformation due, at least in part, to a pre-existing complicated juxtaposition of structures and formations.  相似文献   
6.
7.
8.
We propose a mechanism for the oxidation of gaseous CO into CO2 occurring on the surface mineral hematite (Fe2O3(s)) in hot, CO2-rich planetary atmospheres, such as Venus. This mechanism is likely to constitute an important source of tropospheric CO2 on Venus and could at least partly address the CO2 stability problem in Venus’ stratosphere, since our results suggest that atmospheric CO2 is produced from CO oxidation via surface hematite at a rate of 0.4 petagrammes (Pg) CO2 per (Earth) year on Venus which is about 45% of the mass loss of CO2 via photolysis in the Venusian stratosphere. We also investigated CO oxidation via the hematite mechanism for a range of planetary scenarios and found that modern Earth and Mars are probably too cold for the mechanism to be important because the rate-limiting step, involving CO(g) reacting onto the hematite surface, proceeds much slower at lower temperatures. The mechanism may feature on extrasolar planets such as Gliese 581c or CoRoT-7b assuming they can maintain solid surface hematite which, e.g. starts to melt above about 1200 K. The mechanism may also be important for hot Hadean-type environments and for the emerging class of hot Super-Earths with planetary surface temperatures between about 600 and 900 K.  相似文献   
9.
The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf.  相似文献   
10.
By construction, the time series for radiative forcing that are used to run the 20c3m experiments, which are implemented by climate models, impart non-stationary movements (either stochastic or deterministic) to the simulated time series for global surface temperature. Here, we determine whether stochastic or deterministic trends are present in the simulated time series for global surface temperature by examining the time series for radiative forcing. Statistical tests indicate that the forcings contain a stochastic trend against the alternative hypothesis that the series are trend stationary with a one-time structural change. This result is consistent with the economic processes that impart a stochastic trend to anthropogenic emissions and the physical processes that integrate emissions in the atmosphere. Furthermore, the stochastic trend in the aggregate measure of radiative forcing also is present in the simulated time series for global surface temperature, which is consistent with the relation between these two variables that is represented by a zero dimensional energy balance model. Finally, we propose that internal weather variability imposed on the stochastic trend in radiative forcings is responsible for statistical results, which gives the impression that global surface temperature is trend stationary with a one-time structural change. We conclude that using the ideas of stochastic trends, cointegration, and error correction can generate reliable conclusions regarding the causes of changes in global surface temperature during the instrumental temperature record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号