首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
地球物理   6篇
地质学   6篇
天文学   6篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   3篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1934年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
2.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   
3.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   
4.
Classical novae (CNe) have recently been reported to represent the major class of supersoft X‐ray sources (SSSs) in the central area of our neighbouring galaxy M 31. This paper presents a review of results from recent X‐ray observations of M 31 with XMM‐Newton and Chandra. We carried out a dedicated optical and X‐ray monitoring program of CNe and SSSs in the central area ofM 31. We discovered the first SSSs in M 31 globular clusters (GCs) and their connection to the very first discovered CN in a M 31 GC. This result may have an impact on the CN rate in GCs. Furthermore, in our optical and X‐ray monitoring data we discovered the CN M3 1N 2007‐11a, which shows a very short SSS phase of 29–52 days. Short SSS states (durations ≤ 100 days) of CNe indicate massive white dwarfs (WDs) that are candidate progenitors of supernovae type Ia. In the case of M31N 2007‐11a, the optical and X‐ray light curves suggest a binary containing a WD with MWD > 1.0 M. Finally, we present the discovery of the SSS counterpart of the CN M31N 2006‐04a. The X‐ray light curve of M31N 2006‐04a shows short‐time variability, which might indicate an orbital period of about 2 hours (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
5.
6.
7.
北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展   总被引:2,自引:13,他引:2  
2007年王洪亮等报道在北秦岭西段火山岩中获得一粒年龄为4079±5Ma的冥古宙捕虏锆石。之后,对这一发现开展了深入的调查研究,我们除利用SHIMP技术方法对原4079Ma的锆石进行验证外,新获得了两粒~(207)Pb/~(206)Pb年龄为4007±29Ma和3908±45Ma捕获的变质成因锆石,表明早在4.0Ga已经有变质作用的发生,这或许说明在冥古宙时期地球已经具有相当规模和厚度的地壳。同时开展的岩石学研究表明,蕴含古老锆石的母岩属于火山碎屑熔岩类而不是火山熔岩。  相似文献   
8.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   
9.
The simulation of one-dimensional stationary correlated fields is of increasing importance in the earth sciences. A new method for repeated generation of independent realizations, which are long and dense relative to the correlation scale of the underlying stochastic process, is examined here. This method is conceptually simple and easy to apply. It consists of a matrix-factorization technique for derivation of moving average coefficients which are used as weights in the construction of successive observations from linear combinations of random normal deviates. The matrix-factorization procedure is fast and need be performed only once for a given correlation function and density of observations. This technique can be used to generate evenly spaced observations in time or a single space dimension for any prescribed correlation function and marginal distribution which is Gaussian with arbitrary mean and variance. Tests of ensemble properties of generation procedures have been developed and results for this method compared with those for a popular generation technique. For correlation functions and generation conditions examined, the matrix-factorization moving average approach more accurately produces ensemble characteristics of the prescribed underlying process. For repeated generation of 2001 observations spaced evenly over realizations with length equal to 100 times the correlation scale, the moving average approach requires only about one fifth the CPU time used by the Shinozuka and Jan method to obtain similar accuracy.  相似文献   
10.
A characterization study was carried out in a 10-m-thick sandfill, formed by hydraulic filling with marine sand, in Singapore. Placement methods and compaction were found to influence hydrostratigraphy. The deepest part of the sandfill consists of a loose sand layer and is overlain by a medium sand layer extending to mean sea level (MSL). At certain locations, a thin silty-sand layer was found. The different layers within the saturated zone were found to have different values for hydraulic conductivity (K) and groundwater flow velocity. Estimates for K increase according to the following sequence of methods: repacked sand column, step-pumping test, grain-size analysis and slug test. Slug tests and grain-size analysis yielded comparable estimates of K. The freshwater lens in the older part of the sandfill is about 2 m thicker than in a recently completed area. Comparisons of Ca2+/Cl?, Mg2+/Cl?, K +/Cl? and \({\text{Cl}}^{{\text{ - }}} {\text{/}}{\left( {{\text{Cl}}^{{\text{ - }}} {\text{ + HCO}}^{{\text{ - }}}_{{\text{3}}} } \right)}\) ratios indicate that the chemical composition of the groundwater at shallower depths has probably been altered by mineral dissolution. Weathering of carbonate minerals was found to be a major contributor to the major ions at these depths. The molar ratios approach the value for seawater at greater depths. The groundwater is close to equilibrium with calcite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号