首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   3篇
地球物理   1篇
  2003年   1篇
  2000年   3篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Formenti  Y.  Druitt  T. H.  Kelfoun  K. 《Bulletin of Volcanology》2003,65(8):587-605
The activity of Convention at Montserrat Soufrière Hills Volcano, Montserrat, during the period 1995–1999 included numerous violent explosions. Two major cycles of Vulcanian explosions occurred in 1997: a first of 13 explosions between 4 and 12 August and a second of 75 between 22 September and 21 October. The explosions were short-lived events lasting a few tens of seconds during which partial fountain collapse generated pyroclastic surges and pyroclastic flows, and buoyant plumes ascended 3–15 km into the atmosphere. Each explosion discharged on average 3×105 m3 (dense-rock equivalent, DRE) of magma, draining the conduit to depths of 1–2 km. The paper focuses on the first few seconds of three explosions of the 75 that occurred in September/October 1997: 6 October 1997 at 17:50, 7 October 1997 at 16:02 and 9 October 1997 at 12:32. Physical parameters such as exit velocities, magmatic water contents and magma pressures at fragmentation are estimated by following and modelling the ascent of individual momentum-dominated finger jets visible on videos during the initial stages of each explosion. The model treats each finger jet as an incompressible flow sustained by a steady flux of gas and particles during the few seconds of ascent, and produces results that compare favourably with those using a multiphase compressible code run using similar eruptive parameters. Each explosion reveals a progressive increase in eruptive intensity with time, jet exit velocities increasing from 40 m s–1 at the beginning of the explosion up to 140 m s–1 after a few seconds. Modelling suggests that the first magma to exit was largely degassed, whereas that discharged after a few seconds contained up to 2 wt% water. Magma overpressures up to ~10 MPa are estimated to have existed in the conduit immediately prior to each explosion. Progressive increases in jet exit velocity with time over the first few seconds of each explosion provide direct evidence for strong pre-eruptive gradients in water content and magma pressure in the upper reaches (probably 100–500 m) of the conduit. Fountain collapse occurred during the first 10–20 s of each explosion because the discharging jets had bulk densities up to 100 times that of the atmosphere and were unable to entrain enough air to become buoyant. Such high eruptive densities were due to the presence of partially degassed magma in the conduit.Editorial responsibility: A. Woods  相似文献   
2.
A micro‐pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE‐2) in June and July of 1997. The MPL measurements were made at the Izaña observatory (IZO), a weather station located on a mountain ridge (28°18' N, 16°30' W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and an analysis of aerosol optical profiles acquired during ACE‐2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO, and that the dust layers extended to 5 km asl. The value of the dust backscatter–extinction ratio was determined to be 0.027±0.007 sr−1. Comparisons of the MPL data with data from other co‐located instruments showed good agreement during the dust episode.  相似文献   
3.
As part of the 2nd A erosol C haracterisation E xperiment (ACE‐2), conducted during summer 1997 in the North Atlantic region between the Canary Islands and Portugal, we measured aerosol optical depths (AOD) at a mid‐tropospheric site, near the top of the volcanic mountain "El Teide"(28°16'N, 16°36' W, 3570 m asl). Our instrument was located at the highest altitude in a network of sunphotometers that extended down to sea level. Clear conditions dominated the ACE‐2 period, and, although suggested by back‐trajectories at 300 hPa, no evidence of anthropogenic pollution was found in our data. Three distinct dust episodes were observed. Vertical soundings and back trajectories suggested mineral dust from the Sahel region as a source. During these episodes, AOD increased an order of magnitude with respect to background conditions (from 0.017 up to 0.19 at λ=500 nm). A shift towards neutrality of the extinction spectral dependence (Ångstrom exponent α down to 0.13), indicated that the coarse mode (particle diameter >2 μm) dominated the aerosol size distribution. For 6 days during the episodes of mineral dust, a monomodal size distribution between 2 and 20 μm diameter was obtained from Mie based size distribution calculations. Estimates, at 500 nm, of the single scattering albedo ω0(0.87–0.96), and the aerosol asymmetry parameter g (0.72–0.73) suggest that the dust layer causes a net cooling forcing at the top of the atmosphere.  相似文献   
4.
We report on clear‐sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE‐2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in‐situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space‐borne NOAA/AVHRR data and ground‐based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud‐free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in‐situ aerosol size‐distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (λ=380–1060 nm) is 3–8%. In the MBL there is a tendency for the in‐situ results to be slightly lower than the sunphotometer measurements (10–17% at λ=525 nm), but these differences are within the combined error bars of the measurements and computations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号