首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   2篇
  2019年   1篇
  2016年   2篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Soil secondary minerals are important scavengers of rare earth elements (REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs (La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs (LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs (HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs. The substantial fractions of REEs in soils extracted by oxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile (10 %–30 %), which were similar to the mass fraction of Fe (10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.  相似文献   
2.
The present research elucidates the accelerating effect of alumina minerals on metolachlor transformation using sulfur nucleophiles and also determines the metolachlor transformation mechanisms in the heterogeneous reaction systems. Metolachlor transformation was first systematically investigated under different conditions. Then, the Fourier transform infrared (FTIR) spectra were used to characterize the changes in the surface bonds of the aluminas. The transformation products were qualitatively identified using LC/MS. The results showed that bisulfide can produce efficient metolachlor transformation rates, and the presence of the aluminas can further accelerate the transformation by achieving complete transformation in <21 days. In addition, a higher pH and higher bisulfide concentration are more favorable for metolachlor transformation. When normalized to the surface area, the metolachlor transformation rates were found to follow the order of α‐Al2O3>γ‐AlOOH>γ‐Al2O3 in the presence of different aluminas. FTIR results indicated that the enhancement of metolachlor transformation rates by bisulfide with aluminas can be attributed to the surface active nucleophiles on alumina surfaces formed through Al? S and Al? O bonds. The substitution of chlorine on the metolachlor followed the SN2 mechanism by bisulfide with accelerated rate through mediating the heterogeneous reactions with aluminas.  相似文献   
3.
The interaction between minerals and microbes is an important biogeochemical process in the earth surface system, which links the transformation of substances and energy exchange in different earth spheres, and also affects a series of important earth surface processes, including the formation and evolution of secondary minerals, nutrient cycling and environmental behaviors of pollutants. The previous studies on microbe-mineral interaction focused on the extracellular electron transfer, and the microbe-mediated dissolution, precipitation, mineralization of minerals. Because of semiconductor properties of the mineral, it plays a special role in the process of microbial extracellular electron transfer, which can also help to understand the mutual interaction between microbe and mineral from a new angle of view. The unique energy level structures and redox properties of semiconducting mineral lead to a great difference in the mechanism of microbe and mineral interaction. The latest research progresses in the mechanism of microbe-mineral interaction mediated by semiconducting mineral were reviewed from two aspects: driven by thermodynamics and light energy. Finally, the future development trends of the interaction between microbes and semiconductor minerals were prospected.  相似文献   
4.
Li  Xiaomin  Mou  Shan  Chen  Yating  Liu  Tongxu  Dong  Jun  Li  Fangbai 《中国科学:地球科学(英文版)》2019,62(11):1719-1729
Microaerobic Fe(Ⅱ) oxidation process at neutral pH, driven by microbes can couple to carbon assimilation process in iron-rich freshwater and marine environments; however, few studies report such coupled processes in paddy soil of the critical zone in South China. In this study, rhizosphere soil from flooded paddy field was used as the inoculum to enrich the microaerophilic Fe(Ⅱ)-oxidizing bacteria(FeOB) in gradient tubes with different Fe(Ⅱ) substrates(FeS and FeCO_3) and ~(13)C-biocarbonate as inorganic carbon source to track the carbon assimilation. Kinetics of Fe(Ⅱ) oxidation and biomineralization were analyzed, and the composition and abundance of the microbial community were profiled using 16 S rRNA gene-based highthroughput sequencing. Results showed that microbial cell bands were formed 0.5–1.0 cm below the medium surface in the inoculated tubes with Fe(Ⅱ) substances, while no cell band was found in the non-inocula controls. The protein concentrations in the cell bands reached the highest values at 18.7–22.9 mg m~L(-1) on 6 d in the inocula tubes with Fe(Ⅱ) substrates. A plateau of the yields of ~(13)C-biocarbonate incorporation was observed during 6–15 d at 0.44–0.54% and 1.61–1.98% in the inocula tubes with FeS and FeCO_3, respectively. The inocula tube with FeS showed a higher Fe(Ⅱ) oxidation rate of 0.156 mmol L~(-1) d~(-1) than that with FeCO_3(0.106 mmol L~(-1) d~(-1)). Analyses of X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy revealed that amorphous iron oxide was formed on the surface of rod-shaped bacteria after Fe(Ⅱ) oxidation.Relative to the agar only control, the abundances of Clostridium and Pseudogulbenkiania increased in the inocula tube with FeS,while those of Vogesella, Magnetospirillum, Solitalea, and Oxalicibacterium increased in the inocula tube with FeCO_3, all of which might be the potential microaerophilic FeOB in paddy soil. The findings in this study suggest that microbes that couple microaerobic Fe(Ⅱ) oxidation to carbon assimilation existed in the paddy soil, which provides an insight into the iron-carbon coupling transformation under microaerobic conditions in the critical zone of the iron-rich red soil.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号