首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地球物理   1篇
自然地理   1篇
  2020年   1篇
  2012年   1篇
  1996年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A morphometric analysis of the gills ofOreochromis alcalicus grahami has been carried out on specimens from ecologically distinct lagoons and a water-holding tank of Lake Magadi, a highly alkaline salt lake situated in a volcanically active region of the southern part of the Great Rift Valley in Kenya. The data were compared with those fromOreochromis niloticus, a close relative that lives in fresh water and with data from other fresh water and marine fish. Our primary goal was to identify the possible adaptive features which enable the fish to survive in an environment characterized by severely fluctuating levels of oxygen, a condition exacerbated by factors such as high temperature, alkalinity and osmolarity. The specimens ofO. a. grahami from the south-western lagoons of the lake had gills better adapted for gas exchange with a body mass specific diffusing capacity for oxygen which was about 2 times greater than that of the gills of the specimens from the fish spring lagoons and 2.5 times that of those from the water-holding tanks. Some parameters of the gills ofO. a. grahami, e.g. the gill filament length and number of gill filaments are significantly greater than those ofO. niloticus but the number of secondary lamellae, area of secondary lamellae and the diffusing capacity of the gills are similar in the two species. Compared with most other fish, the gills ofO. a. grahami appear to be particularly well adapted for gas exchange especially by having a thin water-blood barrier. Perhaps in no other extant fish have the gills had to be so exquisitely designed to meet environmental extremes and regulate complex and at times conflicting functions such as gas exchange, iono-regulation, acid-base balance and nitrogenous waste excretion as inO. a. grahami  相似文献   
2.
Coral reefs support the livelihood of millions of people especially those engaged in marine fisheries activities. Coral reefs are highly vulnerable to climate change induced stresses that have led to substantial coral mortality over large spatial scales. Such climate change impacts have the potential to lead to declines in marine fish production and compromise the livelihoods of fisheries dependent communities. Yet few studies have examined social vulnerability in the context of changes specific to coral reef ecosystems. In this paper, we examine three dimensions of vulnerability (exposure, sensitivity, and adaptive capacity) of 29 coastal communities across five western Indian Ocean countries to the impacts of coral bleaching on fishery returns. A key contribution is the development of a novel, network-based approach to examining sensitivity to changes in the fishery that incorporates linkages between fishery and non-fishery occupations. We find that key sources of vulnerability differ considerably within and between the five countries. Our approach allows the visualization of how these dimensions of vulnerability differ from site to site, providing important insights into the types of nuanced policy interventions that may help to reduce vulnerability at a specific location. To complement this, we develop framework of policy actions thought to reduce different aspects of vulnerability at varying spatial and temporal scales. Although our results are specific to reef fisheries impacts from coral bleaching, this approach provides a framework for other types of threats and different social-ecological systems more broadly.  相似文献   
3.
In recent years, wildfires in the western United States have occurred with increasing frequency and scale. Climate change scenarios in California predict prolonged periods of droughts with even greater potential for conditions amenable to wildfires. The Sierra Nevada Mountains provide 70% of water resources in California, yet how wildfires will impact watershed-scale hydrology is highly uncertain. In this work, we assess the impacts of wildfires perturbations on watershed hydrodynamics using a physically based integrated hydrologic model in a high-performance-computing framework. A representative Californian watershed, the Cosumnes River, is used to demonstrate how postwildfire conditions impact the water and energy balance. Results from the high-resolution model show counterintuitive feedbacks that occur following a wildfire and allow us to identify the regions most sensitive to wildfires conditions, as well as the hydrologic processes that are most affected. For example, whereas evapotranspiration generally decreases in the postfire simulations, some regions experience an increase due to changes in surface water run-off patterns in and near burn scars. Postfire conditions also yield greater winter snowpack and subsequently greater summer run-off as well as groundwater storage in the postfire simulations. Comparisons between dry and wet water years show that climate is the main factor controlling the timing at which some hydrologic processes occur (such as snow accumulation) whereas postwildfire changes to other metrics (such as streamflow) show seasonally dependent impacts primarily due to the timing of snowmelt, illustrative of the integrative nature of hydrologic processes across the Sierra Nevada-Central Valley interface.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号