首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地球物理   2篇
  2009年   2篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A bridge health monitoring system is presented based on vibration measurements collected from a network of acceleration sensors. Sophisticated structural identification methods, combining information from the sensor network with the theoretical information built into a finite element model for simulating bridge behavior, are incorporated into the system in order to monitor structural condition, track structural changes and identify the location, type and extent of damage. This work starts with a brief overview of the modal and model identification algorithms and software incorporated into the monitoring system and then presents details on a Bayesian inference framework for the identification of the location and the severity of damage using measured modal characteristics. The methodology for damage detection combines the information contained in a set of measurement modal data with the information provided by a family of competitive, parameterized, finite element model classes simulating plausible damage scenarios in the structure. The effectiveness of the damage detection algorithm is demonstrated and validated using simulated modal data from an instrumented R/C bridge of the Egnatia Odos motorway, as well as using experimental vibration data from a laboratory small-scaled bridge section.  相似文献   
2.
The dynamic characteristics of two representative R/C bridges on Egnatia Odos motorway in Greece are estimated based on low amplitude ambient and earthquake-induced vibrations. The present work outlines the instrumentation details, algorithms for computing modal characteristics (modal frequencies, damping ratios and modeshapes), modal-based finite element model (FEM) updating methods for estimating structural parameters, and numerical results for the modal and structural dynamic characteristics of the two bridges based on ambient and earthquake induced vibrations. Transverse, bending and longitudinal modes are reliably identified and stiffness-related properties of the piers, deck and elastomeric bearings of the FEMs of the two bridges are estimated. Results provide qualitative and quantitative information on the dynamic behavior of the bridge systems and their components under low-amplitude vibrations. Modeling assumptions are discussed based on the differences in the characteristics identified from ambient and earthquake vibration measurements. The sources of the differences observed between the identified modal and structural characteristics of the bridges and those predicted by FEMs used for design are investigated and properly justified.  相似文献   
3.
In the present study, an attempt is made to assess the atmospheric boundary-layer (ABL) depth over an urban area, as derived from different ABL schemes employed by the mesoscale model MM5. Furthermore, the relationship of the mixing height, as depicted by the measurements, to the calculated ABL depth or other features of the ABL structure, is also examined. In particular, the diurnal evolution of ABL depth is examined over the greater Athens area, employing four different ABL schemes plus a modified version, whereby urban features are considered. Measurements for two selected days, when convective conditions prevailed and a strong sea-breeze cell developed, were used for comparison. It was found that the calculated eddy viscosity profile seems to better indicate the mixing height in both cases, where either a deep convective boundary layer develops, or a more confined internal boundary layer is formed. For the urban scheme, the incorporation of both anthropogenic and storage heat release provides promising results for urban applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号