首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   7篇
  国内免费   4篇
测绘学   7篇
大气科学   56篇
地球物理   73篇
地质学   179篇
海洋学   38篇
天文学   87篇
自然地理   43篇
  2022年   5篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   28篇
  2013年   24篇
  2012年   18篇
  2011年   16篇
  2010年   25篇
  2009年   26篇
  2008年   23篇
  2007年   19篇
  2006年   36篇
  2005年   13篇
  2004年   10篇
  2003年   7篇
  2002年   13篇
  2001年   6篇
  2000年   15篇
  1999年   8篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   10篇
  1993年   8篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1978年   9篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
排序方式: 共有483条查询结果,搜索用时 62 毫秒
1.
2.
A time-dependent microphysical model is used to study the evolution of ethane ice clouds in Titan’s atmosphere. The model simulates nucleation, condensational growth, evaporation, coagulation, and transport of particles. For a critical saturation of 1.15 (a lower limit, determined by laboratory experiments), we find that ethane clouds can be sustained between altitudes of 8 and 50 km. Growth due to coalescence is inefficient, limiting the peak in the size distribution (by number) to 10 μm. These clouds vary with a period of about 20 days. This periodicity disappears for higher critical saturation values where clouds remain subvisible. Rainout of ethane due to methane cloud formation raises the altitude of the ethane cloud bottom to near the tropopause and may eliminate ethane clouds entirely if methane cloud formation occurs up to 30 km. However, clouds formed above the troposphere from other gases in Titan’s atmosphere could be sustained even with rainout up to 30 km. Although the optical depth of ethane clouds above 20 km is typically low, short-lived clouds with optical depths of order 0.1-1 can be created sporadically by dynamically driven atmospheric cooling. Ethane cloud particles larger than 25 μm can fall to the surface before total evaporation. However, ethane clouds remain only a small sink for tholin particles. At the peak of their cycle, the optical depth of ethane clouds could be comparable to that of tholin in the near-infrared, resulting in a 5% increase in Titan’s albedo for wavelengths between 1 and 2 μm. A number of factors limit our ablility to predict the ethane cloud properties. These factors include the mixing time in the troposphere, the critical saturation ratio for ethane ice, the existence of a surface reservoir of ethane, the magnitude and timing of dynamically driven temperature perturbations, and the abundance and life cycle of methane clouds.  相似文献   
3.
4.
5.
Biogenic barium, mostly in the barite (BaSO4) form, has been proposed as a tracer for export production in the ocean. Here we report on biogenic barium (Baxs) and particulate organic carbon (POC) fluxes from sediment traps deployed at the DYFAMED site in the Northwestern Mediterranean Sea. Baxs fluxes display average values of 37 ± 45 and 50 ± 58 μg/m2/d at 200 and 1000 m respectively, and are linearly correlated to POC fluxes (mean values of 7.9 ± 9.3 and 6.8 ± 6.8 mg C/m2/d at 200 and 1000 m). Export production estimates, calculated using published Baxs- or POC-based algorithms, all fall below or close to the lower limit of potential export values proposed in the literature. This work clearly demonstrates the usefulness of Baxs as a tracer of oceanic export production in the Northwestern Mediterranean Sea. However, development of a quantitative export production proxy requires a clear understanding of the underlying cause(s) for the observed spatial variations in the relationship between Baxs and POC fluxes. The present study confirms that the processes leading to barite formation differ between margin and open-ocean sites and probably account for much of the regional variability in the POC/Baxs ratio.  相似文献   
6.
Methods are described for estimating the parameters of the Fisher-Tippet Type 1 extreme value distribution and associated return values from measured extremes, such as maximum wave height. A comparison of these methods, with simulated data, shows that those using Gumbel's plotting position are least satifactory. Maximum likelihood methods give the smallest mean square errors, but the very much simpler method of moments is nearly as good.  相似文献   
7.
Sediment supply and pre-existing shoreline morphology are crucial factors in controlling coastal changes due to sea-level rise. Using examples from both southeast and northeast Ireland, it can be shown that sea-level change may trigger a sequence of events which leads to both static and dynamic shoreline equilibrium. Cliff erosion and longshore sediment movement in east Co. Wexford has led to injection of sediment onto the shelf, and the growth, under both wave and tide regimes, of linear offshore shoals. These shoals now control the pattern of shoreline erosion and provide a template for possible stepwise evolution of the coast under any future sea-level rise. In contrast, the nearby coast of south Co. Wexford comprises a series of coarse clastic barriers moving monotonously onshore, via overwash processes. Here the behavior of the barrier is conditioned by the antecedent morphology of both the beach face and stream outlet bedforms. Finally, the rock platform coast of Co. Antrim presents a far more resistant shoreline to incident marine processes, yet even here there is strong evidence of present process control over so-called ‘raised’ platforms and embayments. It is concluded that coastal sediment supply and dynamics, together with coastal morphology and its interaction with waves, present a far more complex variety of sea-level indicators than is normally acknowledged.  相似文献   
8.
R. M. Carter  L. Carter 《Marine Geology》1996,130(3-4):181-202
The Bounty Channel and Fan system provides the basis for a model for deep-sea channel and fan development in a rifted continental margin setting. The sedimentary system results from an interplay between tectonics (fan location; sediment source), turbidity currents (sediment supply), geostrophic currents (sediment reworking and distribution) and climate (sea level, and hence sediment supply and type). Today, sediment is shed from the collisional Southern Alps, part of the Pacific/Indo-Australian plate margin, and passes east across the adjacent shelf and into the Otago Fan complex at the head of the Bounty Trough. Paths of sediment supply, and locations of sediment deposition, are controlled by the bathymetry of the Bounty Trough, with axial slopes as high as 37 m/km (2°) towards the trough head, diminishing to around 3.5 m/km (0.2°) along the trough axis. The Bounty Fan is located 800 km further east, where the Bounty Channel debouches onto abyssal oceanic crust at the mouth of the Bounty Trough. The Bounty Fan comprises a basement controlled fan-channel complex with high leveed banks exhibiting fields of mud waves, and a northward-elongated middle fan. Channel-axis gradients diminish from 6 m/km (0.35°) or more on the upper fan to less than 1 m/km (<0.06°) on the lower fan. Parts of the left bank levee and almost the entire middle fan are being eroded and re-entrained within a Deep Western Boundary Current (DWBC), which passes along the eastern New Zealand margin at depths below 2000 m. The DWBC is the prime source of deep, cold water flow into the Pacific Ocean, with a volume of ca. 20 Sv and velocities up to 4 cm/s or greater. The mouth of the Bounty Channel, at a depth of 4950 m at the south end of the middle fan, acts as a point source for an abyssal sediment drift entrained northward under the DWBC at depths below 4300 m. The Bounty Fan probably originated in the early to middle Neogene, but has mostly been built during the last 3 Myr (Plio-Pleistocene), predominantly as climate-controlled sedimentary couplets of terrigenous, micaceous mud (acoustically reflective; glacial) and biopelagic ooze (acoustically transparent; interglacial), deposited under the pervasive influence of the DWBC.  相似文献   
9.
10.
Carter FW 《GeoJournal》1993,30(3):241-248
Migration within and from Eastern Europe has recently risen as a topic of significance on the European political agenda. One aspect of this complex migration matrix relates to ethnic unrest. This paper examines the scale and spatial ramifications of this movement on a part of the continent recently freed from communist rule.An attempt is made to divide the ethnic quilt of Eastern Europe into those countries with few such problems and those with many. It is possible then to define areas of active migration (hot spots) from those of potential migration (inflammable spots) based on predictions from the current situation.Active ethnic migration results from the present political/military instability in the western Balkans, where refugees have left for other parts of Europe to escape the present Croat-Serb-Muslim conflict. War escalation could encourage potential ethnic migration from Kosovo, the Sandzak and Vojvodina regions,and Macedonia within the former Yugoslavia. Future disquiet elsewhere could stimulate ethnic groups such as the Turks in Bulgaria,and the Hungarian minorities in Slovakia and Romania to join this migration movement scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号