首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   7篇
地质学   2篇
海洋学   2篇
  2020年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  1990年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5–10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5–10 m3/s). This relationship is well illustrated by the 1983–1990 and 1969–1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880–1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.  相似文献   
2.
Age verification of rubyfish (Plagiogeneion rubiginosum) was sought using the bomb radiocarbon chronometer procedure. Stable isotopes were investigated for life history characteristics. Radiocarbon (14C) and stable isotope (δ18O and δ13C) levels were measured in micro-samples from five otoliths that had been aged using a zone count method. All the core 14C measurements were ‘pre-bomb’ indicating ages of at least 45 years, and the 14C measurements across the otolith sections suggested that the zone-count ageing method described herein is not biased. Maximum estimated age was 100 years. There was no significant between-sex difference in the von Bertalanffy growth curves. The δ18O values indicated that rubyfish are near-surface as juveniles, and move deeper with age. Adults appear to reside in 600–1000 m; this is deeper than most trawl-capture data suggest, but not implausible, and has stock assessment implications. The δ13C values reflect fish metabolic rates, trophic feeding levels and oceanographic conditions. The stable isotopes record the environmental life history of each fish, and have value in distinguishing stocks and/or indicating vertical and latitudinal migratory patterns.  相似文献   
3.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   
4.
5.
Environmental impacts of dredging on seagrasses: a review   总被引:2,自引:0,他引:2  
Main potential impacts on seagrasses from dredging and sand mining include physical removal and/or burial of vegetation and effects of increased turbidity and sedimentation. For seagrasses, the critical threshold for turbidity and sedimentation, as well as the duration that seagrasses can survive periods of high turbidity or excessive sedimentation vary greatly among species. Larger, slow-growing climax species with substantial carbohydrate reserves show greater resilience to such events than smaller opportunistic species, but the latter display much faster post-dredging recovery when water quality conditions return to their original state. A review of 45 case studies worldwide, accounting for a total loss of 21,023 ha of seagrass vegetation due to dredging, is indicative of the scale of the impact of dredging on seagrasses. In recent years, tighter control in the form of strict regulations, proper enforcement and monitoring, and mitigating measures together with proper impact assessment and development of new environmental dredging techniques help to prevent or minimize adverse impacts on seagrasses. Costs of such measures are difficult to estimate, but seem negligible in comparison with costs of seagrass restoration programmes, which are typically small-scale in approach and often have limited success. Copying of dredging criteria used in one geographic area to a dredging operation in another may in some cases lead to exaggerated limitations resulting in unnecessary costs and delays in dredging operations, or in other cases could prove damaging to seagrass ecosystems. Meaningful criteria to limit the extent and turbidity of dredging plumes and their effects will always require site-specific evaluations and should take into account the natural variability of local background turbidity.  相似文献   
6.
The two ice caps of Svartisen,at the latitude of the Arctic Circle in Norway,supply 60 glaciers,ranging in size from >50 to <1 km2.Until the last two decades of the 19th century,the glaciers remained close to their maximum recent(Little Ice Age) size.In response to the prevailing 20th century climate,they have become smaller,but the changes have varied between glaciers.Climatic factors have not been the sole control of the variations.The response times of small,steep glaciers are shorter than those of the l...  相似文献   
7.
Due to increasing development Southeast Asia’s coastlines are undergoing massive changes, but the associated impacts on marine habitats are poorly known. Singapore, a densely populated island city–state, is a quintessential example of coastal modification that has resulted in the (hitherto undocumented) loss of seagrass. We reconstructed the historic extent and diversity of local seagrass meadows through herbarium records and backwards extrapolation from contemporary seagrass locations. We also determined the current status of seagrass meadows using long-term monitoring data and identified the main threats to their presence in Singapore. Results show that, even though ∼45% of seagrass has been lost during the last five decades, species diversity remains stable. The main cause of seagrass loss was, and continues to be, land reclamation. We conclude that strict controls on terrestrial runoff and pollution have made it possible for seagrass to persist adjacent to this highly urbanised city–state.  相似文献   
8.
Wave setup was investigated using data from tide gauges in a small harbour at the island of Tristan da Cunha in the South Atlantic Ocean. Frequent examples of wave setup were found during the period 1986–1992, but were much less apparent after 1992, following extensions to the two breakwater arms of the harbour. The unambiguous association of wave setup with the several-decimetre spikes in Tristan sea level, which can persist for a day or so, are a warning that signals related to wave setup could also occur in other tide gauge records, where the wave setup signal could perhaps be misinterpreted as wind setup within the overall storm surge. One conclusion is that, in spite of the difficulties of access to Tristan da Cunha and its ever-present hostile wave climate, the island is undoubtedly now worthy of a permanent tide-gauge installation, which would be an important contribution to the global sea-level network.  相似文献   
9.
10.
Seagrasses have substantial capacity to survive long periods of light reduction, but how acclimation to chronic low light environments may influence their ability to cope with additional stress is poorly understood. This study examines the effect of temporal light reduction by adding two levels of shading to Halophila ovalis plants in two meadows with different light histories, one characterized by a low light (turbid) environment and the other by a relatively high light (clear) environment. Additional shading resulted in complete mortality for both shading treatments at the turbid site while the clear site showed a pattern of decreased shoot density and increased photochemical efficiency (Fv/Fm) with increased shading. These contrasting results for the same species in two different locations indicate that acclimation to chronic low light regimes can affect seagrass resilience and highlights the importance of light history in determining the outcome of exposure to further (short-term) stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号