首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2009年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Sensitive high-resolution ion microprobe (SHRIMP) U–Pb dating, laser-ablation multi-collector ICPMS Hf isotope and electron microprobe element analyses of inherited/antecrystal and magmatic zircons from five granitoid intrusions of Linxi area, in the southern segment of the Great Xing’an Range of China were integrated to solve continental crustal growth mechanisms. These intrusions were divided into two suites. Suites 1 and 2 are mainly granodiorite and syenogranite and correspond to magnesian and ferroan granites, respectively. SHRIMP dating establishes an Early Cretaceous (135–125 Ma) age for most Linxi granitoids and a time of ∼146 Ma when their source rocks were generated or re-melted. However, some granitoids were generated in Early Triassic (241 Ma) and Late Jurassic (146 Ma), after their source rock experienced precursory melting episodes at 263 Ma and 165 Ma, respectively. All zircon 206Pb/238U ages (<300 Ma, n = 100), and high positive zircon εHf(t) values (n = 175) suggest juvenile source materials with an absence of Precambrian basement. Hf–Nd isotopic decoupling of Linxi granitoids suggests a source component of pelagic sediments, i.e. Paleozoic subduction accretion complexes. Zircon εHf(t) values (t = 263–165 Ma) form a trend sub-parallel to the depleted mantle Hf isotope evolution curve, whilst those with t = 146–125 Ma fall markedly below the latter. The first trend indicates a provenance from essentially subducted oceanic slabs. However, the abrupt εHf(t) decrease, together with extensive Early Cretaceous magmatism, is interpreted as reflecting mantle upwelling and resultant underplating, and exhumation of subducted oceanic slabs. Suite 1 granitoids derive mainly from subducted oceanic slabs or Paleozoic subduction accretion complex, whereas Suite 2 from underplated mafic rock and, subordinately, Paleozoic subduction accretion complex. Compositions of Suites 1 and 2 depend on the hydrous, oxidized or relatively anhydrous, reduced nature of source rocks. Among each of these five intrusions, magmatic zircons have systematically lower 176Hf/177Hf than inherited/antecrystal zircons. Hf isotopic and substituting element profiles through inherited/antecrystal zircons (t = 263 to ∼146 Ma) indicate repeated low melt-fraction melting in the source region. In contrast, profiles through inherited/antecrystal and magmatic zircons (t = 146–125 Ma) reveal melting region expansion with a widening range of source compositions and increasing melt fractions. These results lead to the conclusion that continental growth in this region involved a three-step process. This included subduction accretion and repeated underplating, intermediary differentiation of juvenile rocks, and granitoid production from these differentiated rocks.  相似文献   
2.
Chien-Yuan  Tseng  Guo-Chao  Zuo  Huai-Jen  Yang  Houng-Yi  Yang  Kuo-An  Tung  Dun-Yi  Liu  Han-Quan  Wu 《Island Arc》2009,18(3):526-549
Field relationships, mineralogy and petrology, whole‐rock chemistry, and age of the Zhamashi mafic–ultramafic intrusion in the North Qilian Mountains, northwest China, have been studied in the present work. The Zhamashi intrusive body consists of ultramafic, gabbroic, and dioritic rocks in a crudely concentrically zoned structure. The ultramafic rocks are layered cumulates with rock types varying continuously from dunite through wehrlite and olivine clinopyroxenite to clinopyroxenite. The gabbroic and dioritic rocks are also layered or massive cumulates with rock types varying continuously from noritic gabbro through hornblende gabbro to diorite. The ultramafic and adjoining gabbroic rocks are discontinuous in lithology and discordant in structure across the interface. The interface is steep, sharp, and fractured. Contact metamorphic zones are well developed between the Zhamashi intrusive body and the country rock. The concentrically zoned structure of the intrusive body and the intrusion into the continental crust are the two main pieces of evidence for considering that the Zhamashi intrusion is Alaskan‐type. The mineral chemistry of the chromian spinels (Cr‐spinels) and clinopyroxenes, and the variation trend of the whole‐rock compositional plot in the (Na2O + K2O)–FeO–MgO (AFM) diagram are also supportive of this consideration. The age of the Zhamashi intrusive body, determined with sensitive high mass‐resolution ion microprobe on the zircon grains, is 513.0 ± 4.5 Ma. Parental magma of the Zhamashi intrusion is compositionally close to the primitive magma produced by partial melting of the mantle peridotite. It was differentiated by fractional crystallization at low total pressure and under H2O‐rich conditions in an arc environment to form all the major rock types. The concentrically zoned structure of the Zhamashi intrusive body was constructed in two stages: formation of a stratiform‐type layered sequence, followed by diapiric re‐emplacement. The occurrence of the Alaskan‐type intrusion suggests an active continental margin and Cambrian arc magmatism for the northern margin of the Qilian Block.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号