首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
  国内免费   1篇
地球物理   13篇
地质学   5篇
自然地理   25篇
  2021年   1篇
  2020年   1篇
  2012年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
2.
3.
Low-temperature rock magnetic measurements have distinct diagnostic value. However, in most bulk marine sediments the concentration of ferrimagnetic and antiferromagnetic minerals is extremely low, so even sensitive instrumentation often responds to the paramagnetic contribution of the silicate matrix in the residual field of the magnetometer. Analysis of magnetic extracts is usually performed to solve the problems raised by low magnetic concentrations. Additionally magnetic extracts can be used for several other analyses, for example electron microscopy or X-ray diffraction. The magnetic extraction technique is generally sufficient for sediments dominated by magnetite. In this study however, we show that high-coercivity components are rather underrepresented in magnetic extracts of sediments with a more complex magnetic mineralogy. We test heavy liquid separation, using hydrophilic sodium polytungstenate solution Na6[H2W12O40], to demonstrate the efficiencies of both concentration techniques. Low-temperature cycling of zero-field-cooled, field-cooled and saturation isothermal remanent magnetization acquired at room temperature was performed on dry bulk sediments, magnetic extracts, and heavy liquid separates of clay-rich pelagic sediments originating from the Equatorial Atlantic. The results of the thermomagnetic measurements clarify that magnetic extraction favours components with high spontaneous magnetization, such as magnetite and titanomagnetite. The heavy liquid separation is unbiased with respect to high- and low-coercive minerals, thus it represents the entire magnetic assemblage.  相似文献   
4.
5.
6.
To further evaluate the potential of magnetic anisotropy techniques for determining the origin of the natural remanent magnetization (NRM) in sedimentary rocks, several new remanence anisotropy measurement techniques were explored. An accurate separation of the remanence anisotropy of magnetite and hematite in the same sedimentary rock sample was the goal.In one technique, Tertiary red and grey sedimentary rock samples from the Orera section (Spain) were exposed to 13 T fields in 9 different orientations. In each orientation, alternating field (af) demagnetization was used to separate the magnetite and hematite contributions of the high field isothermal remanent magnetization (IRM). Tensor subtraction was used to calculate the magnetite and hematite anisotropy tensors. Geologically interpretable fabrics did not result, probably because of the presence of goethite which contributes to the IRM. In the second technique, also applied to samples from Orera, an anisotropy of anhysteretic remanence (AAR) was applied in af fields up to 240 mT to directly measure the fabric of the magnetite in the sample. IRMs applied in 2 T fields followed by 240 mT af demagnetization, and thermal demagnetization at 90°C to remove the goethite contribution, were used to independently measure the hematite fabric in the same samples. This approach gave geologically interpretable results with minimum principal axes perpendicular to bedding, suggesting that the hematite and magnetite grains in the Orera samples both carry a depositional remanent magnetization (DRM). In a third experiment, IRMs applied in 13 T fields were used to measure the magnetic fabric of samples from the Dome de Barrot area (France). These samples had been demonstrated to have hematite as their only magnetic mineral. The fabrics that resulted were geologically interpretable, showing a strong NW-SE horizontal lineation consistent with AMS fabrics measured in the same samples. These fabrics suggest that the rock's remanence may have been affected by strain and could have originated as a DRM or a CRM.Our work shows that it is important to account for the presence of goethite when using high field IRMs to measure the remanence anisotropy of hematite-bearing sedimentary rocks. It also shows that very high magnetic fields (>10 T) may be used to measure the magnetic fabric of sedimentary rocks with highly coercive magnetic minerals without complete demagnetization between each position, provided that the field magnetically saturates the rock.  相似文献   
7.
To better understand the origin of the initial magnetic susceptibility (??in) signal in carbonate sequences, a rock magnetic investigation that includes analysis of acquisition curves of the isothermal remanent magnetization (IRM) and hysteresis parameters, was undertaken on Devonian carbonates from the Villers and Tailfer sections, Belgium. Both sections are divided into a lower unit, dominated by biostromal and external ramp facies (biostromal unit) and an upper unit, only consisting of lagoonal facies (lagoonal unit). The variations in ??in signal are mainly driven by magnetite variation, mostly pseudo-single-domain (PSD) magnetite. Clay minerals, pyrite, hematite and obviously calcite and dolomite are also present but their contribution to the ??in pattern is not significant. There is a correlation between detrital proxies (Zr, Rb, Al2O3, TiO2) and ??in for the Tailfer biostromal unit and the entire Villers section. The pervasive presence of fine-grained magnetite is interpreted as related to remagnetization. In absence of external fluids, the iron released during the smectite to illite transition remains in situ. In those situations ??in may reflect an inherited primary synsedimentary signal. In the lagoonal unit of the Tailfer section, remagnetization appears to have obscured the original detrital information prompting the need for an evaluation of the composition of the susceptibility signal for individual case studies.  相似文献   
8.
9.
10.
Cantilever torque magnetometry is utilized widely in physics and material science for the determination of magnetic properties of thin films and semiconductors. Here, we report on its first application in rock magnetism, namely the determination of K1 and K2 of single crystal octahedra of natural magnetite. The design of cantilever magnetometers allows optimization for the specific research question at hand. For the present study, a cantilever magnetometer was used that enables measurement of samples with a volume up to 64 mm3. It can be inserted into an electromagnet with a maximum field of 2 T. The cantilever spring is suitable for torque values ranging from 7.5 × 10− 7 N·m to 5 × 10− 6 N·m. The torque is detected capacitively; the measured capacitance is converted into torque by using a calibrated feedback coil. The magnetometer allows in-situ rotation of the sample in both directions and is, therefore, also suitable to analyze rotational hysteresis effects.The evaluation of the magnetite anisotropy constants involved Fourier analysis of the torque signal on the magnetite crystals' (001) and (110) planes. The absolute anisotropy constant has been computed using the extrapolation-to-infinite-field method. The value of K1 at room temperature is determined at − 1.28 × 104 [J m− 3] (± 0.13, i.e. 10%) and that of K2 at − 2.8 × 103 [J m− 3] (± 0.1, i.e. 2%). These values concur with earlier determinations that could not provide an instrumental error, in contrast with this work.The cantilever magnetometer performs four times faster than other torque magnetometers used for rock magnetic studies. This makes the instrument also suitable for magnetic fabric analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号