首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   1篇
测绘学   6篇
大气科学   37篇
地球物理   34篇
地质学   46篇
海洋学   3篇
天文学   10篇
自然地理   14篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   8篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   8篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   11篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
1.
Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the geometry of structures rather than inferred environment of formation. Five styles are recognised: pure shear (P), simple shear (S), compressional (C), vertical (V) and undeformed (U). These dictate the first letter of the codes; the remaining letters conveying the evidence. This information can be used to reconstruct palaeostress fields and to infer physical properties of sediments when they deformed. Individual structures are not diagnostic of particular environments but the suite of structures, their relative scale, stratigraphical relationships, and orientation relative to palaeoslopes and to palaeoice‐flow directions can be used to infer the environment in which they formed. This scheme is applied at five sites in west Wales. The typical succession is interpreted as subglacial sediments overlain by meltout tills, flow tills and sediment flows. Paraglacial redistribution of glacial sediments is widespread. Large‐scale compressional deformation is restricted to sites where glaciers readvanced. Large‐scale vertical deformation occurs where water was locally ponded near the ice margin. There is no evidence for glaciomarine conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
A generic network design in close range photogrammetry is one where optimal multi-ray intersection geometry is obtained with as few camera stations as practicable. Hyper redundancy is a concept whereby, once the generic network is in place, many additional images are recorded, with the beneficial impact upon object point precision being equivalent to the presence of multiple exposures at each camera position within the generic network. The effective number of images per station within a hyper redundant network might well be in the range of 10 to 20 or more. As is apparent when it is considered that a hyper redundant network may comprise hundreds of images, the concept is only applicable in practice to fully automatic vision metrology systems, where it proves to be a very effective means of enhancing measurement accuracy at the cost of minimal additional work in the image recording phase. This paper briefly reviews the network design and accuracy aspects of hyper redundancy and illustrates the technique by way of the photogrammetric measurement of surface deformation of a radio telescope of 26 m diameter. This project required an object point measurement accuracy of σ  = 0·065 mm, or 1/400 000 of the diameter of the reflector.  相似文献   
3.
While the Hubble constant can be derived from observable time delays between images of lensed quasars, the result is often highly sensitive to assumptions and systematic uncertainties in the lensing model. Unlike most previous authors, we put minimal restrictions on the radial profile of the lens and allow for non-elliptical lens potentials. We explore these effects using a broad class of models with a lens potential     which has an unrestricted radial profile but self-similar iso-potential contours defined by     For these potentials, the lens equations can be solved semi-analytically. The axis ratio and position angle of the lens can be determined from the image positions of quadruple gravitational lensed systems directly, independent of the radial profile. We give simple equations for estimating the power-law slope of the lens density directly from the image positions and for estimating the time delay ratios. Our method greatly simplifies the numerics for fitting observations and is fast in exploring the model parameter space. As an illustration, we apply the model to PG1115+080. An entire one-parameter sequence of models fits the observations exactly. We show that the measured image positions and time delays do not uniquely determine the Hubble constant.  相似文献   
4.
Twentieth‐century summer (July–August) temperatures in northern Finland are reconstructed using ring widths, maximum density and stable carbon isotope ratios (δ13C) of Scots pine tree rings, and using combinations of these proxies. Verification is based on the coefficient of determination (r2), reduction of error (RE) and coefficient of efficiency (CE) statistics. Of the individual proxies, δ13C performs best, followed by maximum density. Combining δ13C and maximum density strengthens the climate signal but adding ring widths leads to little improvement. Blue intensity, an inexpensive alternative to X‐ray densitometry, is shown to perform similarly. Multi‐proxy reconstruction of summer temperatures from a single site produces strong correlations with gridded climate data over most of northern Fennoscandia. Since relatively few trees are required (<15) the approach could be applied to long sub‐fossil chronologies where replication may be episodically low. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
Natural resource management frameworks are important in generating information that promotes the development of appropriate policies and regulation for eff  相似文献   
6.
7.
8.
Upscaling in Global Change Research   总被引:1,自引:0,他引:1  
This paper reviews the problems of upscaling that arise, in the context of global change research, in a wide variety of disciplines in the physical and social sciences. Upscaling is taken to mean the process of extrapolating from the site-specific scale at which observations are usually made or at which theoretical relationships apply, to the smallest scale that is resolved in global-scale models. Upscaling is pervasive in global change research; although in some cases it is done implicitly. A number of conceptually distinct, fundamental causes of upscaling problems are identified and are used to classify the upscaling problems that have been encountered in different disciplines. A variety of solutions to the upscaling problems have been developed in different disciplines, and these are compared here. Improper upscaling can dramatically after model simulation results in some cases. A consideration of scaling problems across diverse disciplines reveals a number of interesting conceptual similarities among disciplines whose practitioners might otherwise not communicate with each other. Upscaling raises a number of important questions concerning predictability and reliability in global change research, which are discussed here. There is a clear need for more research into the circumstances in which simple upscaling is not appropriate, and to develop or refine techniques for upscaling.  相似文献   
9.
A rational global strategy with respect to greenhouse-gas emissions would seek to minimize total risk, which is the sum of the risk of negative impacts due to climatic change associated with a given level of emissions, and the risks associated with the process of achieving that emission level. Given the existence of reducible uncertainties in estimating these risks, and the possibility that an emission target thought to minimize total risk is later found to be not strict enough, a risk-hedging strategy is a more realistic policy objective. This paper is Part I of a two-part series in which these risks are reviewed and an interim risk-hedging emission level is proposed. Here, the risks associated with unrestrained greenhouse-gas emissions are reviewed. In particular, the carbon-cycle response to continuing CO2 emissions; the heat trapping of projected greenhouse gas increases in comparison to other anthropogenic and natural heating or cooling perturbations; the climatic response to heating perturbations; and the impacts of projected climatic change on global agriculture, forests, coastal regions, coral reefs, water resources, terrestrial species, stratospheric and tropospheric ozone, and human comfort and welfare are critically examined. It is concluded that unrestrained emissions of greenhouse gases pose real and substantial risks to human societies and to ecosystems, and that these risks are likely to grow substantially if the climate warms beyond that associated with a CO2 doubling. These risks clearly justify some action to limit emissions. The magnitude of emission restraint that is justified depends not only on the risks reviewed here, but also on the risks associated with measures to limit greenhouse-gas emissions, which are reviewed in Part II.  相似文献   
10.
The relative costs and CO2 emission reduction benefits of advanced centralized fossil fuel electricity generation, hybrid photovoltaic-fossil fuel electricity generation, and total solar electricity generation with hydrogen storage are compared. Component costs appropriate to the year 2000–2010 time frame are assumed throughout. For low insolation conditions (160 W m–2 mean annual solar radiation), photovoltaic electricity could cost 5–13 cents/kWh by year 2000–2010, while for high insolation conditions (260 W m–2) the cost could be 4–9 cents/kWh. Advanced fossil fuel-based power generation should achieve efficiencies of 50% using coal and 55% using natural gas. Carbon dioxide emissions would be reduced by a factor of 2 to 3 compared to conventional coal-based electricity production in industrialized countries. In a solar-fossil fuel hybrid, some electricity would be supplied from solar energy whenever the sun is shining and remaining demand satisfied by fossil fuels. This increases total capital costs but saves on fuel costs. For low insolation conditions, the costs of electricity increases by 0–2 cents/kWh, while the cost of electricity decreases in many cases for high insolation conditions. Solar energy would provide 20% or 30% of electricity demand for the low and high insolation cases, respectively. In the solar-hydrogen energy system, some photovoltaic arrays would provide current electricity demand while others would be used to produce hydrogen electrolytically for storage and later use in fuel cells to generate electricity. Electricity costs from the solar-hydrogen system are 0.2–5.4 cents/kWh greater than from a natural gas power plant, and 1.0–4.5 cents/kWh greater than from coal plant for the cost and performance assumptions adopted here. The carbon tax required to make the solar-hydrogen system competitive with fossil fuels ranges from $70–660/tonne, depending on the cost and performance of system components and the future price of fossil fuels.Leakage of hydrogen from storage into the atmosphere, and the eventual transport of a portion of the leaked hydrogen to the stratosphere, would result in the formation of stratospheric water vapor. This could perturb stratospheric ozone amounts and contribute to global warming. Order-of-magnitude calculations indicate that, for a leakage rate of 0.5% yr–1 of total hydrogen production -which might be characteristic of underground hydrogen storage - the global warming effect of solarhydrogen electricity generation is comparable to that of a natural gas-solar energy hybrid system after one year of emission, but is on the order of 1% the impact of the hybrid system at a 100 year time scale. Impacts on stratospheric ozone are likely to be minuscule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号