首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
地球物理   10篇
地质学   2篇
海洋学   1篇
天文学   6篇
自然地理   8篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2008年   4篇
  2006年   4篇
  2004年   2篇
  2000年   6篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1982年   2篇
  1976年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
This paper describes the design of a star sensor based upon a high dynamic range CCD in order to reach an arcsec-level attitude determination in balloon-borne missions. A custom star identification software was developed and laboratory-tested on a prototype assembled using commercial components. A set of numerical simulations have been carried out to study the dependence on the pointing precision of the centroid position accuracy, the number of detected stars and the effect of the image focusing. Moreover, the role of the electronic noise and the discrete pixel structure on the light signals is identified by the analysis of numerical simulations. Laboratory tests confirm that the arcsec pointing accuracy with a 1 Hz update rate can be achieved with our combination of custom-developed software and selected hardware components.  相似文献   
2.
During a balloon flight in September 1979 of the MISO low-energy -ray telescope, the BL Lac-object MkN 501 was studied in the hard X-ray range above 30 keV and in the low energy -ray range up to 19 MeV. No statistically significant X- and -ray fluxes were detected. The implications of the upper limits obtained are discussed in the light of the relativistic jet theories recently proposed.  相似文献   
3.
An analysis of the Zihuatanejo, Mexico, earthquake of 1994 December 10 ( M = 6.6), based on teleseismic and near-source data, shows that it was a normal-faulting, intermediate-depth ( H = 50 ± 5 km) event. It was located about 30 km inland, within the subducted Cocos plate. The preferred fault plane has an azimuth of 130°, a dip of 79° and a rake of −86°. The rupture consisted of two subevents which were separated in time by about 2 s, with the second subevent occurring downdip of the first. The measured stress drop was relatively high, requiring a Δσ of about a kilobar to explain the high-frequency level of the near-source spectra. A rough estimate of the thickness of the seismogenic part of the oceanic lithosphere below Zihuatanejo, based on the depth and the rupture extent of this event, is 40 km.
This event and the Oaxaca earthquake of 1931 January 15 ( M = 7.8) are the two significant normal-faulting, intermediate-depth shocks whose epicentres are closest to the coast. Both of these earthquakes were preceded by several large to great shallow, low-angle thrust earthquakes, occurring updip. The observations in other subduction zones show just the opposite: normal-faulting events precede, not succeed, updip, thrust shocks. Indeed, the thrust events, soon after their occurrence, are expected to cause compression in the slab, thus inhibiting the occurrence of normal-faulting events. To explain the occurrence of the Zihuatanejo earthquake, we note that the Cocos plate, after an initial shallow-angle subduction, unbends and becomes subhorizontal. In the region of the unbending, the bottom of the slab is in horizontal extension. We speculate that the large updip seismic slip during shallow, low-angle thrust events increases the buckling of the slab, resulting in an incremental tensional stress at the bottom of the slab and causing normal-faulting earthquakes. This explanation may also hold for the 1931 Oaxaca event.  相似文献   
4.
5.
A new method of searching for dark matter in the form of weakly interacting massive particles (WIMP) has been developed with the direct detection of the low energy nuclear recoils observed in a massive target (ultimately many tons) of ultra pure liquid argon at 87 K. A high selectivity for argon recoils is achieved by the simultaneous observation of both the VUV scintillation luminescence and of the electron signal surviving columnar recombination, extracted through the liquid–gas boundary by an electric field.

First physics results from this method are reported, based on a small 2.3 l test chamber filled with natural argon and an accumulated fiducial exposure of about 100 kg day, supporting the future validity of this method with isotopically purified 40Ar and for a much larger unit presently under construction with correspondingly increased sensitivities.  相似文献   

6.
In this study we analyse coseismic GPS displacements and DInSAR data to constrain a dislocation model for the three largest earthquakes of the 1997 Umbria-Marche seismic sequence. The first two events, which occurred on September 26 at 00:33 GMT (Mw 5.7) and 09:40 GMT (Mw 6.0) respectively, are investigated using both GPS displacements and DInSAR interferograms. We discuss and compare the results of previous studies which separately modeled a smaller subset of geodetic data. We provide a dislocation model for these two earthquakes which fits well both GPS and DInSAR data and agrees with the results of seismological and geological investigations. The first event consists of a unilateral rupture towards the southeast with a uniform dislocation. The strike, rake and dip angles are those resulting from the CMT solution. The second event consists of an unilateral rupture towards the northwest and a variable slip distribution on the fault plane. The strike and the rake are consistent with the CMT solution, but the dip angle has been slightly modified to improve the simultaneous fit of GPS and DInSAR data. While the second rupture (09:40 GMT) arrived very close to the surface, the fit to geodetic data shows that the first rupture (00:33 GMT) is deeper (2 km), despite the more evident surface geological effects. The analysis of new SAR interferograms allows the identification of a 5–6 cm additional displacement caused by the October 3 (Mw 5.2) and 6 (Mw 5.4) seismic events.We use data from a new DInSAR interferogram to model the displacement field of the Sellano earthquake of October 14, 1997. For this event significant GPS measurements were not available. We tested two different fault plane geometries: a blind, planar fault (top depth = 2.4 km), and a curved (listric) fault reaching the surface. The two models provide a generally similar fit to the data, and show that most of the slip was released at depths greater than 2.4 km along a gently dipping (40°–45°) fault surface. They also show that a unilateral rupture does not allow fitting the interferometric fringes since there is evident surface deformation to the northwest of the hypocenter. Moreover, we suggest that the concentration of high residuals in the southern part of our uniform slip model may in fact indicate a certain slip variability in this area.We conclude that, despite the moderate magnitudes and the lack of significant surface faulting, the space geodetic data allowed to constrain dislocation models giving new insights in the rupture process of the three largest events of the sequence.  相似文献   
7.
8.
The Corsica‐Sardinia block is a lithospheric fragment whose recent role in the geodynamics of the central‐Western Mediterranean basin is still enigmatic. The most recent regional structure in Sardinia is the Plio‐Pleistocene Campidano Basin, which is considered in a ‘post‐rift’ stage since the Middle Pleistocene. New structural and stratigraphic geological surveys along with luminescence ages provide evidence to support an ongoing tectonic activity since the Marine Isotopic Stage 7 (MIS7; ca. 220 ka) on the Sinis peninsula, the structural high that bounds the north‐western side of the Campidano Basin. In particular, this paper reveals for the first time the presence of N–S striking normal faults system offsetting late Pleistocene aeolianites (130 ± 12 ka; 82 ± 9 ka).  相似文献   
9.
The analysis of the Irpinia earthquake of 3 April 1996 (ML = 4.9), based on strong motion and short period local data, shows that it was a normal faulting event located within the epicentral area of the MS 6.9, 1980, earthquake. It was located at 40.67° N and 15.42° E at a depth of 8 km. The local magnitude (4.9) has been computed from the VBB stations of the MedNet network. The moment magnitude is Mw = 5.1 and the seismic moment estimated from the ground acceleration spectra is 5.0 1023 dyne cm. Spectral analysis of the strong motion recordings yields a Brune stress drop of 111 bars and a corner frequency of 1 Hz. The source radius associated to these values of seismic moment and stress drop is 1.3 km. The focal mechanism has two nodal planes having strike 297°, dip 74°, rake 290° and strike 64°, dip 25° and rake 220°, respectively. A fault plane solution with strike 295° ± 5°, dip 70° ± 5°, and rake 280° ± 10° is consistent with the S-wave polarization computed from the strong motion data recorded at Rionero in Vulture. We discuss the geometry and the dimensions of the fault which ruptured during the 1996 mainshock, its location and the aftershock distribution with respect to the rupture history of the 1980 Irpinia earthquake. The distribution of seismicity and the fault geometry of the 1996 earthquake suggest that the region between the two faults that ruptured during the first subevents of the 1980 event cannot be considered as a strong barrier (high strength zone), as it might be thought looking at the source model and at the sequence of historical earthquakes revealed by paleoseismological investigations.  相似文献   
10.
We study the static stress changes caused by moderatemagnitude earthquakes that occurred in Umbria-Marcheduring a seismic sequence which started on September3, 1997, with a ML 4.7 foreshock and consisted ofeight earthquakes whose magnitudes range between 5.0and 6.0. The earthquakes occurred on normal faultsstriking in the Apennine direction and dipping at lowangles towards the SW. The goal is to verify if stresschanges induced by each mainshock can explain theoccurrence of subsequent events. Our results show thatthe foreshock slightly increased the Coulomb stress onthe first mainshock fault plane. The distribution ofseismicity that followed the foreshock is clustered inthe area of Coulomb stress increase comprised betweenthe two faults which ruptured in opposite directionsduring the two largest shocks of September 26. Thelocations and the geometry of the three largestearthquakes agree well with the pattern of Coulombstress changes suggesting elastic interaction betweenthese faults. However, we were not able to model thewhole sequence of ML 5.0 events in terms ofCoulomb stress changes. The difficulties are due tothe similarity of fault plane solutions for eventslocated very close to each other and in the hangingwall of the mainshock rupture planes. Our results showthat normal stress changes agree better with thespatial pattern of the whole sequence of moderatemagnitude events. If previous ruptures unclamp thefault planes of subsequent earthquakes, fluid flow canplay a dominant role in promoting earthquakes duringthe seismic sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号