首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   2篇
地球物理   2篇
海洋学   1篇
  2019年   1篇
  2018年   1篇
  2006年   1篇
  2002年   2篇
排序方式: 共有5条查询结果,搜索用时 531 毫秒
1
1.
We investigated the dynamics of upwelling fronts near a coast. This work was first motivated by laboratory experiments [Bouruet-Aubertot, Linden, Dyn. Atmos. Oceans, 2002] in which the front is produced by the adjustment of a buoyant fluid initially confined within a bottomless cylinder. It was shown that cyclonic eddies consisting of coastal waters are enhanced when the front is unstable near the coast (the outer vertical boundary). The purpose of this paper is to provide further insights into this process. We reproduced the experimental configuration using a three-dimensional model of the primitive equations. We first show that for coastal fronts more potential energy, in terms of the maximum available potential energy, is released than for open-ocean fronts. Therefore, waves of larger amplitude are generated during the adjustment and the mean flow that establishes has a higher kinetic energy in the former case. Then as baroclinic instability starts and wave crests reach the boundary, cyclonic eddies are enhanced as in the laboratory experiments and in a similar way. However, in contrast to the laboratory experiments, offshore advection of cyclonic eddies can occur in two stages, depending on the spatial organization of the baroclinic wave. When the baroclinic wave consists of the sum of different modes and is thus highly asymmetric, the offshore advection of cyclonic eddies occurs just after their enhancement at the boundary, as in the laboratory experiments. By contrast, when a single-mode baroclinic wave develops, neighboring cyclonic eddies first merge before being advected offshore. Very different behavior is observed for open-ocean fronts. First a mixed baroclinic–barotropic instability grows. Then the eddies transfer their energy to the mean flow and the barotropic and baroclinic instabilities start again. An excellent agreement is obtained with the main result obtained in the laboratory experiments: the ratio between growth rates of surface cyclonic and anticyclonic vorticity increases as the instability develops nearer to the coast.  相似文献   
2.
A non-linear non-hydrostatic model (MIT-gcm) is used to study the generation and propagation of internal tides. The model domain covers a continental slope and neighbouring parts of the deep ocean and shelf. Uniformity in the along-slope direction is assumed. We focus on the non-linear evolution of the internal tide once generated. In particular, we show that in the main region of generation, over the upper part of the slope, small-scale features occur, indicative of breaking and mixing. Far from the generation region, non-linear processes are important in the reflection of the beam at the bottom, where higher harmonics are generated. This implies an energy transfer toward higher frequencies and the resulting shape of the energy spectra is consistent with observations. Turbulent and mixing processes are analysed by employing an adiabatic sorting method; thus, we calculate the development in time of the available potential energy, the variation in the background potential energy due to irreversible processes, and the distribution of the Cox number (the local turbulent diffusivity normalized by the background diffusivity) over the slope. With rotation, the transfer of energy to higher harmonics is reduced.  相似文献   
3.
We describe laboratory experiments on the instability and later evolution of a front in a two-layer rotating fluid. In particular, we focus on the influence of a nearby boundary on instability growth and eddy formation. The front is produced through the adjustment of a buoyant fluid initially confined within a bottomless cylinder. Typically a front in quasi-cyclostrophic balance establishes after two rotation periods, after which it becomes unstable. Measurements of the velocity and vorticity fields at the surface are made which provide detailed information on the evolution of the front as the instability grows to finite amplitude. We focus on the time evolution of the vorticity and distinguish between the cyclonic and anticyclonic components. The spatial averages of the cyclonic and anticyclonic vorticity first grow exponentially. This growth saturates when eddies form and are advected across the front. The growth rate depends upon two nondimensional parameters: the width W of the upwelling region in units of the internal radius of deformation and the depth ratio δ between the two layers. Measurements of the growth rates for the average of the cyclonic and anticyclonic vorticity are compared to the values inferred from a simplified model for baroclinic instability. A good agreement is obtained when the front develops far from the boundary (i.e. W1). However, the agreement is only qualitative when the front is near the boundary (i.e. W1). We find that, as W decreases, the growth of cyclonic eddies consisting of dense—“coastal”—water is enhanced compared to that of anticyclonic vorticity consisting of buoyant—“off-shore”—water. This crucial effect of the boundary with respect to the instability of the front has significant impact on exchanges across the front.  相似文献   
4.
Microstructure measurements were performed along two sections through the Halmahera Sea and the Ombai Strait and at a station in the deep Banda Sea. Contrasting dissipation rates (??) and vertical eddy diffusivities (K z ) were obtained with depth-averaged ranges of \(\sim [9 \times 10^{-10}-10^{-5}]\) W kg??1 and of \(\sim [1 \times 10^{-5}-2 \times 10^{-3}]\) m2 s??1, respectively. Similarly, turbulence intensity, \(I={\epsilon }/(\nu N^{2})\) with ν the kinematic viscosity and N the buoyancy frequency, was found to vary seven orders of magnitude with values up to \(10^{7}\). These large ranges of variations were correlated with the internal tide energy level, which highlights the contrast between regions close and far from internal tide generations. Finescale parameterizations of ?? induced by the breaking of weakly nonlinear internal waves were only relevant in regions located far from any generation area (“far field”), at the deep Banda Sea station. Closer to generation areas, at the “intermediate field” station of the Halmahera Sea, a modified formulation of MacKinnon and Gregg (2005) was validated for moderately turbulent regimes with 100 < I < 1000. Near generation areas marked by strong turbulent regimes such as “near field” stations within strait and passages, ?? is most adequately inferred from horizontal velocities provided that part of the inertial subrange is resolved, according to Kolmogorov scaling.  相似文献   
5.
Ocean Dynamics - The dissipation flux coefficient, a measure of the mixing efficiency of a turbulent flow, was computed from microstructure measurements collected with a vertical microstructure...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号