首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
地球物理   3篇
地质学   1篇
天文学   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
The behavior of reinforced concrete structures under severe demands, as strong ground motions, is highly complex; this is mainly due to the complexity of concrete behavior and to the strong interaction between concrete and steel, with several coupled failure modes. On the other hand, given the increasing awareness and concern on the worldwide seismic risk, new developments have arisen in earthquake engineering; nonetheless, some developments are mainly based on simple analytical tools that are widely used, given their moderate computational cost. This research aims to provide a solid basis for validation and calibration of such developments by using computationally efficient continuum mechanics‐based tools. Within this context, this paper presents a model for 3D simulation of cyclic behavior of RC structures. The model integrates a bond‐slip model developed by one of the authors and the damage variable evolution methodology for concrete damage plastic model developed by some authors. In the integrated model, a new technique is derived for efficient 3D analysis of bond‐slip of 2 or more crossing reinforcing bars in beam‐column joints, slabs, footings, pile caps, and other similar members. The analysis is performed by implementing the bond‐slip model in a user element subroutine of Abaqus and the damage variable evolution methodology in the original concrete damage plastic model in the package. Two laboratory experiments consisting of a column and a frame subjected to cyclic displacements up to failure are simulated with the proposed formulation.  相似文献   
3.
Indicators of Chemical Pollution from Septic Systems   总被引:5,自引:0,他引:5  
  相似文献   
4.
Standard Penetration Test(SPT) and Cone Penetration Test(CPT) are the most frequently used field tests to estimate soil parameters for geotechnical analysis and design.Numerous soil parameters are related to the SPT N-value.In contrast,CPT is becoming more popular for site investigation and geotechnical design.Correlation of CPT data with SPT N-value is very beneficial since most of the field parameters are related to SPT N-values.A back-propagation artificial neural network(ANN) model was developed to predict the N6o-value from CPT data.Data used in this study consisted of 109 CPT-SPT pairs for sand,sandy silt,and silty sand soils.The ANN model input variables are:CPT tip resistance(q_c),effective vertical stress(σ'_v),and CPT sleeve friction(f_s).A different set of SPT-CPT data was used to check the reliability of the developed ANN model.It was shown that ANN model either under-predicted the N_(60)-value by 7-16%or over-predicted it by 7-20%.It is concluded that back-propagation neural networks is a good tool to predict N_(60)-value from CPT data with acceptable accuracy.  相似文献   
5.
Northwest Africa 3164 is a coarse‐grained angrite that shows reaction coronas, a unique character among achondrites. Olivine (Fo57; 1.2 wt% CaO), fassaitic clinopyroxene, anorthite, and spinel account for 46–47, 28–29, 8–13, and 4–8 vol%, respectively; kamacite is an accessory phase. The spinel grains in contact with clinopyroxene are bounded by discontinuous 20 μm thick coronas of anorthite and olivine, indicating the reaction Cpx + Spl → Ol + An (R1). In addition, irregular coronas of clinopyroxene and spinel developed around the primary anorthite in contact with primary olivine, during the reaction Ol + An → Cpx + Spl (R2). R2 also generated clinopyroxene and spinel films between the secondary olivine and anorthite coronas produced during R1, implying that R1 preceded R2. Both are metamorphic reactions that developed in the solid state. Finally, the coronas are cross cut by μm‐thick veinlets due to a late shock. A mass‐balance study shows that R2 is almost the reverse of R1. The P–T metamorphic evolution of the rock, modeled by calculating a P–T isochemical diagram, indicates an equilibrium T of 940 ± 120 °C at < 0.9 GPa for the initial assemblage, followed by an increase of T up to approximately 1000–1200 °C during reaction R1 and a subsequent cooling during R2. Several causes are envisaged to account for this metamorphic evolution. Contact metamorphism due to a hot magmatic intrusion in the angrite parent body is favored, as similar metamorphic coronas are well known in metamorphic terrestrial rocks. In addition to differentiation and magmatism, there is now evidence for metamorphism in the angrite parent body, which would have been a large asteroid or a planetary‐sized body.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号