首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
测绘学   3篇
大气科学   1篇
地球物理   20篇
地质学   29篇
天文学   2篇
自然地理   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1972年   1篇
排序方式: 共有56条查询结果,搜索用时 406 毫秒
1.
2.
3.
This study presents geochemical characteristics of glauconites in estuarine deposits within the Maastrichtian Lameta Formation in central India. Resting conformably over the Bagh Group, the Lameta Formation consists of ~4-5 m thick arenaceous, argillaceous and calcareous green sandstones underlying the Deccan Traps. The sandstone is friable, medium-to coarse-grained, well-sorted and thoroughly crossstratified, and contains marine fossils. Detailed petrography, spectroscopy and mineral chemistry indicates unique chemical composition of glauconite with high K_2O, MgO, Al_2O_3 and moderate TFe_2O_3. Glauconite is formed by the replacement of K-feldspars, initially as stringers in the cleavages and fractures of feldspars. Incipient glauconite subsequently evolves fully, appearing as pellets. Fully-evolved glauconite pellets often leave tiny relics of K-feldspar. XRD exhibits characteristic peak of 10A from basal(001)reflection of glauconite, indicating the "evolved" character. The K_2O content of glauconites in the Lameta Formation varies from 5.51% to 8.29%, corroborating the "evolved" to "highly-evolved" maturation stage.The TFe_2O_3 content of glauconite varies from 12.56% to 18.90%. The PASS-normalized-REE patterns of glauconite exhibit a "hat-shape" confirming the authigenic origin of glauconites. The slightly-negative to slightly-positive Ce anomaly value and the moderate TFe_2O_3 content of glauconite agree well with a suboxic,estuarine condition. The replacement of K-feldspar by the glauconite contributes towards the high K_2O content. Compositional evolution of glauconites in the Lameta Formation is similar to those observed in many Precambrian sedimentary sequences.  相似文献   
4.
A study was undertaken to determine the chronology, petrogenesis and relationships among the shergottites, Shergotty and Zagami and the unique achondrite ALHA77005. These meteorites are the product of a variety of complex processes.Petrogenesis: Chondrite-normalized abundance patterns of Shergotty and Zagami are very similar and show pronounced depletions of both the light REE (La-Nd) and heavy REE (Dy-Lu) relative to Sm-Gd. These characteristic depletions are even more pronounced for ALHA77005. The light REE depletion is qualitatively consistent with the presence of cumulus pyroxene and/or olivine in these meteorites, but trace element models show that the parental magmas of all three meteorites were probably also light REE depleted. Both trace element model calculations and combined Rb-Sr and Sm-Nd isotopic systematics show that the meteorites could not have been co-magmatic nor can ALHA77005 be representative of the source material of the shergottites. Light REE depletion of the parental magmas also implies light REE depletion of the source material. The Sm-Nd systematics of the shergottites require a time-averaged sub-chondritic (light REE enriched) Sm-Nd ratio since 4.6 AE ago. The Sm-Nd systematics of ALHA77005 permit a time-averaged super-chondritic (light REE depleted) Sm/Nd ratio if its crystallization age is less than TICE = 0.72 AE.Chronology. Rb-Sr internal isochrons for all three meteorites and a Sm-Nd internal isochron for Zagami are concordant at ~ 180 Myr. 39Ar-40Ar plateau ages of Shergotty and Zagami maskelynite are ~250–260 Myr. These ages apparently reflect resetting of these isotopic systems by shock metamorphism which converted the feldspar to maskelynite. The concordance of these ages suggests a single shock event during which the meteorites were in close physical proximity. The time of this event is most precisely given by the Rb-Sr age of 180 ± 4 Myr for Zagami.The crystallization ages of the meteorites were not precisely determined. Extreme upper limits are determined by Sm-Nd model ages relative to an eucrite initial 143Nd144Nd = 0.505835 at 4.6 AE ago. These model ages for Shergotty, Zagami and ALHA77005 are 3600, 3500 and 2850 Myr, respectively. The Sm-Nd whole rock age of 1340 ± 60 Myr for the three meteorites gives the crystallization age if the Sm/Nd ratios of the precursor materials were always the same. We consider this 1340 Myr age as a “best estimate” upper limit. “Best estimate” lower limits for Shergotty and Zagami are taken from the average 39Ar-40Ar ages of 1200 and 900 Myr of pyroxene separates. The average 39Ar-40Ar age of a whole rock sample of ALHA77005 was 1600 Myr and can be partitioned between a low temperature (feldspar) phase and a high temperature (olivine + pyroxene + inclusions) “phase”. The average apparent 39Ar-40Ar age of the low temperature phase is ~1050 Myr, which is chosen as the “best estimate” lower limit to the age. The crystallization ages of Shergotty, Zagami and ALHA77005 probably lie within the ranges of 1200–1300, 900–1300 and 1000–1300 Myr, respectively. The Rb-Sr whole rock age of 4400 ± 400 Myr and single-stage BABI model ages of ~4800–5100 Myr are interpreted as reflecting differentiation of the parent body at ~4600 Myr ago.The complex geochemical and isotopic evolution recorded by these meteorites suggests a geologically active parent body capable of sustaining melting at two or more epochs in its history.  相似文献   
5.
India is prone to earthquake hazard; almost 65 % area falls in high to very high seismic zones, as per the seismic zoning map of the country. The Himalaya and the Indo-Gangetic plains are particularly vulnerable to high seismic hazard. Any major earthquake in Himalaya can cause severe destruction and multiple fatalities in urban centers located in the vicinity. Seismically induced ground motion amplification and soil liquefaction are the two main factors responsible for severe damage to the structures, especially, built on soft sedimentary environment. These are essentially governed by the size of earthquake, epicentral distance and geology of the area. Besides, lithology of the strata, i.e., sediment type, grain size and their distribution, thickness, lateral discontinuity and ground water depth, play an important role in determining the nature and degree of destruction. There has been significant advancement in our understanding and assessment of these two phenomena. However, data from past earthquakes provide valuable information which help in better estimation of ground motion amplification and soil liquefaction for evaluation of seismic risk in future and planning the mitigation strategies. In this paper, we present the case studies of past three large Indian earthquakes, i.e., 1803 Uttaranchal earthquake (Mw 7.5); 1934 Bihar–Nepal earthquake (Mw 8.1) and 2001 Bhuj earthquake (Mw 7.7) and discuss the role of soft sediments particularly, alluvial deposits in relation to the damage pattern due to amplified ground motions and soil liquefaction induced by the events. The results presented in the paper are mainly focused around the sites located on the river banks and experienced major destruction during these events. It is observed that the soft sedimentary sites located even far from earthquake epicenter, with low water saturation, experienced high ground motion amplification; while the sites with high saturation level have undergone soil liquefaction. We also discuss the need of intensifying studies related to ground motion amplification and soil liquefaction in India as these are the important inputs for detailed seismic hazard estimation.  相似文献   
6.
Abstract— Neodymium, strontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain ~98% of its Sm and Nd inventory. A conventional 147Sm-143Nd isochron yielded an age of 4.53 ± 0.04 Ga (2 σ) and ?143 Nd = 0.45 ± 1.1. An 146Sm-142Nd isochron gives initial 146Sm/144Sm = 0.0076 ± 0.0009 and ?143 Nd = ?2.5 ± 0.4. The Rb-Sr analyses give initial 87Sr/86Sr (I87Sr) = 0.698972 ± 8 and 0.698970 ± 18 for LEW and ADOR, respectively, relative to 87Sr/86Sr = 0.71025 for NBS987. The difference, ΔI87Sr, between I87Sr for the angrites and literature values for Allende CAIs, corresponds to ~9 Ma of growth in a solar nebula with a CI chondrite value of 87Rb/86Sr = 0.91, or ~5 Ma in a nebula with solar photospheric 87Rb/86Sr = 1.51. Excess 53Cr from extinct 53Mn (t1/2 = 3.7 Ma) in LEW86010 corresponds to initial 53Mn/55Mn = 1.44 ± 0.07 × 10?6 and closure to Cr isotopic homogenization 18.2 ± 1.7 Ma after formation of Allende inclusions, assuming initial 53Mn/55Mn = 4.4 ± 1.0 × 10?5 for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The 146Sm/144Sm value found for LEW86010 corresponds to solar system initial (146Sm/144Sm)o = 0.0080 ± 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 ± 0.0009 for crystallization 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated “chondritic” parent body formed from the solar nebula ~2 Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, ~2.6 Ma after the CAIs, to satisfy the Sr and Cr isotopic systematics.  相似文献   
7.
8.
Identification and characterization of active faults and deciphering their seismic potential are of vital importance in seismic hazard assessment of any region. Seismic vulnerability of India is well known as more than 60 % of its area lies in high hazard zones due to the presence of major active faults in its plate boundaries and continental interiors, which produced large earthquakes in the past and have potential to generate major earthquakes in future. The safety of critical establishments, like Power plants, Refinaries and other lifeline structures is a major concern in these areas and calls for a better characterization of these faults to help mitigate the impact of future earthquakes. The paper provides a brief overview of the work carried out in India on active fault research, its limitations and immediate priorities.  相似文献   
9.
Prajapati  Sanjay K.  Kumar  Ashok  Chopra  Sumer  Bansal  B. K. 《Natural Hazards》2013,69(3):1781-1801

We compiled available information of damages and other effects caused by the September 18, 2011, Sikkim–Nepal border earthquake from the print and electronic media, and interpreted them to obtain Modified Mercalli Intensity (MMI) at over 142 locations. These values are used to prepare the intensity map of the Sikkim earthquake. The map reveals several interesting features. Within the meizoseismal area, the most heavily damaged villages are concentrated toward the eastern edge of the inferred fault, consistent with eastern directivity. The intensities are amplified significantly in areas located along rivers, within deltas or on coastal alluvium such as mud flats and salt pans. We have also derived empirical relation between MMI and ground motion parameters using least square regression technique and compared it with the available relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes which have occurred in NE Himalayas along with present intensity has been utilized for developing attenuation relationship for NE India using two-step regression analyses. The derived attenuation relation is useful for assessing damage of a potential future earthquake (earthquake scenario-based planning purposes) for the northeast Himalaya region.

  相似文献   
10.
The Indian subcontinent is characterized by various tectonic units viz., Himalayan collision zone in North, Indo-Burmese arc in north-east, failed rift zones in its interior in Peninsular Indian shield and Andaman Sumatra trench in south-east Indian Territory. During the last about 100 years, the country has witnessed four great and several major earthquakes. Soon after the occurrence of the first great earthquake, the Shillong earthquake (M w: 8.1) in 1897, efforts were started to assess the seismic hazard in the country. The first such attempt was made by Geological Survey of India in 1898 and since then considerable progress has been made. The current seismic zonation map prepared and published by Bureau of Indian Standards, broadly places seismic risk in different parts of the country in four major zones. However, this map is not sufficient for the assessment of area-specific seismic risks, necessitating detailed seismic zoning, that is, microzonation for earthquake disaster mitigation and management. Recently, seismic microzonation studies are being introduced in India, and the first level seismic microzonation has already been completed for selected urban centres including, Jabalpur, Guwahati, Delhi, Bangalore, Ahmadabad, Dehradun, etc. The maps prepared for these cities are being further refined on larger scales as per the requirements, and a plan has also been firmed up for taking up microzonation of 30 selected cities, which lie in seismic zones V and IV and have a population density of half a million. The paper highlights the efforts made in India so far towards seismic hazard assessment as well as the future road map for such studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号