首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   9篇
  国内免费   4篇
测绘学   3篇
大气科学   16篇
地球物理   46篇
地质学   50篇
海洋学   4篇
天文学   19篇
综合类   6篇
自然地理   4篇
  2022年   5篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   14篇
  2017年   11篇
  2016年   14篇
  2015年   9篇
  2014年   10篇
  2013年   18篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2005年   3篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   2篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
1.
Variability among populations was analyzed in five provenances of Acacia nilotica from spatially variable habitats. Populations of A. nilotica developed in response to their habitat conditions. The level of variability was significantly high among the populations. Phenotypic variability was extremely high for leaf and stipular spine characteristics. The nature of morphological variability for vegetative traits appeared environmentally controlled. The differentiation of leaf and stipular spine expression seems to have an adaptive significance for the species in terms of water economy. Although, seed and pod characteristics are genetically controlled showing a lower proportion of variability but these traits supported r and k-selection that may allow the species to survive under a wide array of contrasting habitats. The study suggested that populations of A. nilotica are differentiated in relation to the heterogeneity of environment. These populations became adapted to their habitat through the variability of morphological expressions. The morphologically differentiated populations of the species had allowed them to maintain themselves in a wide array of environmental situations enabling A. nilotica to occupy ample ecological ranges.  相似文献   
2.
It is well established that aerosols affect the climate in a variety of ways. In order to understand these effects, we require an insight into the properties of aerosols. In this paper we present a study of aerosol properties such as aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol radiative forcing (ARF) over mega city of Lahore (Pakistan). The data from Aerosol Robotic Network (AERONET) have been used for the period December 2009 to October 2011. The seasonal average values of AOD, asymmetry parameter (ASY) and volume size distribution in coarse mode were observed to be highest in summer. On the other hand, the average values of Angstrom exponent (AE) and imaginary part of refractive index (RI) were found to be maximum in winter. The average value of real part of RI was found to be higher in spring than in all other seasons. The SSA exhibited an increasing trend with wavelength in the range 440 nm–1020 nm in spring, summer and fall indicating the dominance of coarse particles (usually dust). However, a decreasing trend was found in winter in the range 675 nm–1020 nm pointing towards the dominance of biomass and urban/industrial aerosols. As far as aerosol radiative forcing (ARF) is concerned, we have found that during the spring season ARF was lowest at the surface of Earth and highest at top of the atmosphere (TOA). This indicates that the atmosphere was warmer in spring than in all the remaining seasons.  相似文献   
3.
Catch and effort data were analyzed to estimate the maximum sustainable yield(MSY) of King Soldier Bream, Argyrops spinifer(Forssk?l, 1775, Family: Sparidae), and to evaluate the present status of the fish stocks exploited in Pakistani waters. The catch and effort data for the 25-years period 1985–2009 were analyzed using two computer software packages, CEDA(catch and effort data analysis) and ASPIC(a surplus production model incorporating covariates). The maximum catch of 3 458 t was observed in 1988 and the minimum catch of 1 324 t in 2005, while the average annual catch of A. spinifer over the 25 years was 2 500 t. The surplus production models of Fox, Schaefer, and Pella Tomlinson under three error assumptions of normal, log-normal and gamma are in the CEDA package and the two surplus models of Fox and logistic are in the ASPIC package. In CEDA, the MSY was estimated by applying the initial proportion(IP) of 0.8, because the starting catch was approximately 80% of the maximum catch. Except for gamma, because gamma showed maximization failures, the estimated results of MSY using CEDA with the Fox surplus production model and two error assumptions, were 1 692.08 t(R 2 =0.572) and 1 694.09 t( R 2 =0.606), respectively, and from the Schaefer and the Pella Tomlinson models with two error assumptions were 2 390.95 t( R 2 =0.563), and 2 380.06 t( R 2 =0.605), respectively. The MSY estimated by the Fox model was conservatively compared to the Schaefer and Pella Tomlinson models. The MSY values from Schaefer and Pella Tomlinson models were the same. The computed values of MSY using the ASPIC computer software program with the two surplus production models of Fox and logistic were 1 498 t(R 2 =0.917), and 2 488 t( R 2 =0.897) respectively. The estimated values of MSY using CEDA were about 1 700–2 400 t and the values from ASPIC were 1 500–2 500 t. The estimates output by the CEDA and the ASPIC packages indicate that the stock is overfished, and needs some effective management to reduce the fishing effort of the species in Pakistani waters.  相似文献   
4.
The latest Carboniferous–Early Permian Dorud Group in the Chaman‐Saver area of eastern Alborz, Iran is more than 222 m thick and includes thick sequences of oncolitic limestone, sandy limestone, sandstones and shales. The Emarat and Ghosnavi formations of this Group are dated here as latest Gzhelian to early Sakmarian Stages. During the Asselian Stage, the sea level fell abruptly and epeirogenic episodes occurred. These events generated a broad, shallow carbonate platform suitable for the growth and diversity of smaller foraminifers in the Chaman‐Saver area which, consequently, displays faunal differences with the rest of the Alborz Mountains. Three foraminiferal biozones are proposed: Nodosinelloides potievskayae–Vervilleina bradyi Zone (latest Gzhelian), Calcitornella heathi–Nodosinelloides sp. Zone (latest Gzhelian–Asselian), and Rectogordius iranicus n. gen. n. sp.–Hemigordius schlumbergeri Zone (early Sakmarian). The new taxa described herein include: Pseudovidalina iranica n. sp., P. damghanica n. sp., Rectogordius iranicus n. gen. n. sp. and Tezaquina sp. 1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Oligocene and Lower Miocene sediments from High Folded Zone of Iraqi Zagros have been studied paleontologically at south of Sulaimaniyah, Kurdistan Region, NE Iraq. The identified fauna are consisted of (25) genera and species of benthonic and (16) species of planktonic foraminifera. The fauna comprises relatively abundant foraminiferal assemblages of moderate diversity. Based on the stratigraphic distribution of these species, two biozones have been recognized which are NummulitesRotalia and Globoquadrina dehiscens zones. These biozones indicate that the studied sections of Basara and Khewata are of Late Oligocene–Early Miocene age. Based on the microfossils, it has been found that the age of sediments is equivalent to or represents Anah and Serikagni Formations. Some previous studies described Oligocene rocks (Kirkuk Group) as interior sag basin. In the present study, the occurrence of the group inside High Folded Zone and its rich fauna content are used for the discussion of the sag basin versus normal marine water.  相似文献   
6.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   
7.

Design of reinforced soil structures is greatly influenced by soil–geosynthetic interactions at interface which is normally assessed by costly and time consuming laboratory tests. In present research, using the results of large-scale direct shear tests conducted on soil–anchored geogrid samples a model for predicting Enhanced Interaction Coefficient (EIC) is proposed enabling researchers/engineers easily, quickly and at no cost to estimate soil–geosynthetic interactions. In this regard well and poorly graded sands, anchors of three different size and anchorage lengths from the shear surface together with normal pressures of 12.5, 25 and 50 kPa were used. Artificial Intelligence (AI) called the Gene Expression Programming (GEP) was adopted to develop the model. Input variables included coefficients of curvature and uniformity, normal pressure, effective grain size, anchor base and surface area, anchorage length and the output variable was EIC. Contributions of input variables were evaluated using sensitivity analysis. Excellent correlation between the GEP-based model and the experimental results were achieved showing that the proposed model is well capable of effectively estimating soil–anchored geogrid enhanced interaction coefficient. Sensitivity analysis for parameter importance shows that the most influential variables are normal pressure (σn) and anchorage length (L) and the least effective parameters are average particle size (D50) and anchor base area (Ab).

  相似文献   
8.
The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91–3.15 °C, 0.93–2.63 °C, and 6–12 %, and under H3B2, the values of change are 0.69–1.92 °C, 0.56–1.63 °C, and 8–14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.  相似文献   
9.
Establishing predevelopment benchmark groundwater conditions is challenging without long-term records to discern impacts of pumping and climate change on aquifer levels. Understanding periodic natural cycles and trends require 100 years or more data which rarely exist. Using limited records, we develop an approach to hindcast multidecadal levels and examine the temporal evolution of climatic and pumping impacts. The methodology includes a wavelet-aided statistical model, constrained by temporal scales of physical processes responsible for groundwater level variation, including rainfall, evapotranspiration and pumping stresses. The model and hindcasts are tested at three sites in Florida using traditional split calibration-verification methods for the period of record and with the documented historical drought and wet years for the period of no-record. The pumping impact is quantified over time and compared with regional groundwater models, revealing that withdrawals are responsible for 30 to 70% of the declines in levels since 1960s. Hindcasting yielding 110 years of monthly levels is used to assess the effect of climate change and pumping on the frequency of critical low levels. At all three sites, the frequencies of critical low levels increase significantly in the 1960 to 2015 period when compared to the 1904 to 1959 period. For example, at site 1, the return period of the critical low level is shortened by 3.9 years due to climate change and 2.2 years due to pumping.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号