首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   4篇
自然地理   2篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Mathematical Geosciences - Knowledge of the sub-surface characteristics is crucial in many engineering activities. Sub-surface soil classes must, for example, be predicted from indirect...  相似文献   
2.
In this study, maximum dry spell length and number of dry spell periods of rainy seasons in the upper Baro-Akobo River basin which is a part of the Nile basin, Western Ethiopia, were investigated to analyse the drought trend. Daily rainfall records of the period 1972–2000 from eight rain gauge stations were used in the analysis, and Mann-Kendall test was used to test trends for significance. Furthermore, the beginning and end of the trend development in the dry spell were also tested using the sequential version of Mann-Kendall test. Results have shown that there is neither clear monotonic trend found in dry spell for the basin nor significant fluctuation in the onset, cession and duration of rainfall in the Baro-Akobo river basin. This sufficiently explains why rain-fed agriculture has suffered little in the western part of Ethiopia. The predictable nature of dry spell pattern may have allowed farmers to adjust to rainfall variability in the basin. Unlike many parts of Ethiopia, the Baro-Akobo basin climate variability is not a limiting factor for rain-fed agriculture productivity which may contribute significantly to national food security.  相似文献   
3.
Groundwater resources in some parts of the lower section of Shire River valley, Malawi, are not useable for rural domestic water supply due to high salinity. In this study, a combined assessment of isotopic (87Sr/86Sr, δ18O and δ2H) and major ion composition was conducted in order to identify the hydro-geochemical evolution of the groundwater and thereby the causes of salinity. Three major end-members (representing fresh- and saline groundwater, and evaporated recharge) were identified based on major ion and isotopic composition. The saline groundwater is inferred to result from dissolution of evaporitic salts (halite) and the fresh groundwater shows influence of silicate weathering. Conservative mixing models show that brackish groundwater samples result from a three component mixture comprising the identified end-members. Hence their salinity is interpreted to result from mixing of fresh groundwater with evaporated recharge and saline groundwater. On the other hand, the groundwater with low TDS, found at some distance from areas of high salinity, is influenced by mixing of evaporated recharge and fresh groundwater only. Close to the Shire marshes, where there is shallow groundwater, composition of stable isotopes of water indicates that evaporation may also be an important factor.  相似文献   
4.
Treelines are widely studied worldwide in relation to climate changes because they are hypothesized to be sensitive climate proxies. However, forest treeline expansion toward higher altitudes may be influenced both by a warming climate and by other factors, such as surface morphology and, in the European Alps, the decline in alpine farming. Our results from five valleys in the inner and peripheral regions of the Alps show that present-day treeline altitudes mostly depend on anthropogenic and orographicgeomorphologic factors. Climatic treelines are limited to steep and inaccessible slopes, and occur at higher altitudes and farther from mountain peaks in the inner regions than in the peripheral regions of the mountain range. Looking for sites in which to study treeline responses to climate change, we recommend investigating the inner regions of the Alps where treelines are farther from human disturbances and from geomorphologic constraints, potentially resulting in freer upward shifts under warmer temperature conditions. We also found that, in the valleys selected, human disturbance is mainly concentrated about 165 m below non-climatic treelines, suggesting a homogeneous influence on treelines, regardless of geographic position.  相似文献   
5.
6.
7.
Microbiological reduction of a biogenic sulfated green rust , was examined using a sulfate reducing bacterium (Desulfovibrio alaskensis). Experiments investigated whether could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic as the electron acceptor, at circumneutral pH in unbuffered medium. transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use as an electron acceptor. , vivianite and an iron sulfur compound were formed as a result of reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.  相似文献   
8.
In this study we quantify the spatial variability of seasonal water balances within the Omo-Ghibe River Basin in Ethiopia using methods proposed within the Prediction in Ungauged Basins initiative. Our analysis consists of: (1) application of the rainfall–runoff model HBV-Light to several sub-catchments for which runoff data are available, and (2) estimation of water balances in the remaining ungauged catchments through application of the model with regionalized parameters. The analyses of the resulting water balance outcomes reveal that the seasonal water balance across the Omo-Ghibe Basin is driven by precipitation regimes that change with latitude, from being strongly “seasonal” in the north to “precipitation spread throughout the year, but with a definite wetter season” in the south. The basin is divided into two distinct regions based on patterns of seasonal water balance and, in particular, seasonal patterns of soil moisture storage.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号