首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   4篇
地质学   2篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2002年   1篇
  1985年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Abstract

River flow conditions in many watersheds of Iceland are particularly disturbed during winter by the formation, drifting and accumulation of river ice, whose impact on water encroachment and extent of inundations is not reflected in the discharge records. It is therefore necessary to use river discharge with great caution when assessing the magnitude of past inundations in Iceland, and to give attention to other flood magnitude parameters. A GIS-based methodology is presented that focuses on inundation extent as an alternative parameter for the assessment and ranking of the magnitude of past flooding events in the Ölfusá-Hvítá basin, known as one of the most dangerous flood-prone river complexes in Iceland. Relying ultimately on a macro-scale grid, the method enabled the reconstruction of the extent of inundations, the delineation of the flood plain, and, finally, some estimation of the likelihood of flooding of exposed areas that include marine submergences and river floods for both open water and ice conditions.

Citation Pagneux, E., Gísladóttir, G. & Snorrason, Á. (2010) Inundation extent as a key parameter for assessing the magnitude and return period of flooding events in southern Iceland. Hydrol. Sci. J. 55(5), 704–716.  相似文献   
3.
Direct evidence of the feedback between climate and weathering   总被引:1,自引:0,他引:1  
Long-term climate moderation is commonly attributed to chemical weathering; the higher the temperature and precipitation the faster the weathering rate. Weathering releases divalent cations to the ocean via riverine transport where they promote the drawdown of CO2 from the atmosphere by the precipitation and subsequent burial of carbonate minerals. To test this widely-held hypothesis, we performed a field study determining the weathering rates of 8 nearly pristine north-eastern Iceland river catchments with varying glacial cover over 44 years. The mean annual temperature and annual precipitation of these catchments varied by 3.2 to 4.5 °C and 80 to 530%, respectively during the study period. Statistically significant linear positive correlations were found between mean annual temperature and chemical weathering in all 8 catchments and between mean annual temperature and both mechanical weathering and runoff in 7 of the 8 catchments. For each degree of temperature increase, the runoff, mechanical weathering flux, and chemical weathering fluxes in these catchments are found to increase from 6 to 16%, 8 to 30%, and 4 to 14% respectively, depending on the catchment. In contrast, annual precipitation is less related to the measured fluxes; statistically significant correlations between annual precipitation and runoff, mechanical weathering, and chemical weathering were found for 3 of the least glaciated catchments. Mechanical and chemical weathering increased with time in all catchments over the 44 year period. These correlations were statistically significant for only 2 of the 8 catchments due to scatter in corresponding annual runoff and average annual temperature versus time plots. Taken together, these results 1) demonstrate a significant feedback between climate and Earth surface weathering, and 2) suggest that weathering rates are currently increasing with time due to global warming.  相似文献   
4.
Physics and Chemistry of Minerals - The crystal structure of a ternary Mn3+-bearing garnet, close to the composition Gross34 Spess26 CaMnGt40 has been refined to a weighted R-value of 0.051 for 440...  相似文献   
5.
River discharges are traditionally modeled by employing a standard power-law methodology. Recently, the Bayesian approached has successfully been applied to improve the estimates of the standard power-law. In this article, an extension to the standard power-law based on Bayesian B-splines is developed and tested on data sets from 61 different rivers. The extended model is evaluated against the standard power-law using two measures, the Deviance Information Criterion and Bayes factor. The extended model captures deviations in the data from the standard power-law but reduces to the standard power-law when that model is adequate. The standard power-law is inadequate for 26% of the rivers while the extended model provides an adequate fit in all of those cases and for the remaining 74% of the rivers the extended model and the power-law model both give adequate fit with almost identical estimates.  相似文献   
6.
The October 1996 eruption within the Vatnajökull Glacier, Iceland, provides a unique opportunity to study the net effect of volcanic eruptions on atmospheric and oceanic CO2. Volatile elements dissolved in the meltwater that enclosed the eruption site were eventually discharged into the ocean in a dramatic flood 35 days after the beginning of the eruption, enabling measurement of 50 dissolved element fluxes. The minimum concentration of exsolved CO2 in the 1×1012 kg of erupted magma was 516 mg/kg, S was 98 mg/kg, Cl was 14 mg/kg, and F was 2 mg/kg. The pH of the meltwater at the eruption site ranged from about 3 to 8. Volatile and dissolved element release to the meltwater in less than 35 days amounted to more than one million tonnes, equal to 0.1% of the mass of erupted magma. The total dissolved solid concentration in the floodwater was close to 500 mg/kg, pH ranged from 6.88 to 7.95, and suspended solid concentration ranged from 1% to 10%. According to H, O, C and S isotopes, most of the water was meteoric whereas the C and S were of magmatic origin. Both C and S went through isotopic fractionation due to precipitation at the eruption site, creating “short cuts” in their global cycles. The dissolved fluxes of C, Ca, Na, Si, S and Mg were greatest ranging from 1.4×1010 to 1.4×109 mol. The dissolved C flux equaled 0.6 million tonnes of CO2. The heavy metals Ni, Mn, Cu, Pb and Zn were relatively mobile during condensation and water–rock interactions at the eruption site. About half of the measured total carbon flood flux from the 1996 Vatnajökull eruption will be added to the long-term CO2 budget of the oceans and the atmosphere. The other half will eventually precipitate with the Ca and Mg released. Thus, for eruptions on the ocean floor, one can expect a net long-term C release to the ocean of less than half that of the exsolved gas. This is a considerably higher net C release than suggested for the oceanic crust by Staudigel et al. [Geochim. Cosmochim. Acta, 53 (1989) 3091]. In fact, they suggested a net loss of C. Therefore, magma degassed at the ocean floor contributes more C to the oceans and the atmosphere than magma degassed deep in the oceanic crust. The results of this study show that subglacial eruptions affecting the surface layer of the ocean where either Mn, Fe, Si or Cu are rate-determining for the growth of oceanic biomass have a potential for a transient net CO2 removal from the ocean and the atmosphere. For eruptions at high latitudes, timing is crucial for the effect of oceanic biota. Eruptions occurring in the wintertime when light is rate-determining for the growth of biota have much less potential for bringing about a transient net negative CO2 flux from the ocean atmosphere reservoir.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号