首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   7篇
  国内免费   3篇
测绘学   6篇
大气科学   18篇
地球物理   34篇
地质学   76篇
海洋学   38篇
天文学   27篇
综合类   1篇
自然地理   30篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   2篇
  2017年   7篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   25篇
  2012年   7篇
  2011年   13篇
  2010年   7篇
  2009年   18篇
  2008年   13篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   6篇
  1984年   3篇
  1982年   5篇
  1981年   9篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
1.
In West Greenland, early and mid Holocene relative sea level (RSL) fall was replaced by late Holocene RSL rise during the Neoglacial, after 4–3 cal. ka BP (thousand calibrated years before present). Here we present the results of an isolation basin RSL study completed near to the coastal town of Sisimiut, in central West Greenland. RSL fell from 14 m above sea level at 5.7 cal. ka BP to reach a lowstand of ?4.0 m at 2.3–1.2 cal. ka BP, before rising by an equivalent amount to present. Differences in the timing and magnitude of the RSL lowstand between this and other sites in West and South Greenland record the varied interplay of local and non‐Greenland RSL processes, notably the reloading of the Earth's crust caused by a Neoglacial expansion of the Greenland Ice Sheet (GIS) and the subsidence associated with the collapse of the Laurentide Ice Sheet forebulge. This means that the timing of the sea level lowstand cannot be used to infer directly when the GIS advanced during the Neoglacial. The rise in Late Holocene RSL is contrary to recently reported bedrock uplift in the Sisimiut area, based on repeat GPS surveys. This indicates that a belt of peripheral subsidence around the current ice sheet margin was more extensive in the late Holocene, and that there has been a switch from subsidence to uplift at some point in the last thousand years or so. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
The results of several recent isolated investigations in planing theory are consolidated in this paper, together with new insights generated by a recent numerical solution of the vertically impacting wedge problem by Zhao and Faltinsen [(1992), Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593–612]. As a result, in contrast to some earlier studies, it is found that the “wetted width” associated with the added mass is not that of the intersection of the wedge with the undisturbed water surface, but the wetted width of the splashed-up water, as originally proposed by Wagner [(1932), Uber Stoss-und Gleitvorgange an der Oberflache von Flussig-Keiten, Zeitschrift für Angewandte Mathematik und Mechanik, Band 12, Heft 4 (August)]. However, the splash-up ratio is not the value of (π/2–1) which he proposed, but a value which decreases with increasing deadrise, originally proposed in the late-1940s by Pierson (“Pierson's hypothesis” in the paper). For 30° deadrise, for example, Pierson's splash-up ratio is two-thirds that of Wagner's.The new equations are employed to determine the increase in the “added mass” of prismatic hull sections due to chine immersion, using experimental data. If mo is the added amss of the hull section whose chines are just wetted, Payne [(1988), Design of High-speed Boats. Volume 1: Planing. Fishergate, Inc., Annapolis, Maryland, U.S.A.] postulated that the increase in added mass due to a chine submergence (zc) would be
where b is the chine beam and k is a constant which Payne [(1988), Design of High-speed Boats. Volume 1: Planing. Fishergate, Inc., Annapolis, Maryland, U.S.A.] gave as .The present analysis includes the “one-sided flow” correction introduced in Payne [(1990), Planing and impacting forces at large trim angels. Ocean Engng 17, 201–234]. Partly for that reason and partly because of the more precise analysis of the experimental data, the present paper revises the value to k = 2 for wetted length to beam ratios normally employed. For deadrise angles in excess of 40° and wetted keel to beam ratios in excess of 2.0, there is some evidence that k < 2.0.The revised theoretical formulation is compared with eight different sets of experimental data for flat plate and prismatic hull forms and is found to be in excellent agreement when the speed is high enough for “dynamic suction” (a loss of buoyancy at low speeds and low wetted lenghts) to be unimportant. This is true for “chines-dry” operation with deadrise angles up to 50° and chines-wet operation at length to beam ratios far in excess of the most extreme conventional practice.The research involved in performing this analysis led to the realization that different towing tanks measure different wetted chine lengths for the same hulls and test conditions. Some consistently measure more splash-up than “theory” (based on Pierson's splash-up hypothesis) predicts and others measure somewhat less than the theory. Some examples are given in Appendix B. The reason for this is not understood.  相似文献   
3.
The use of oil-based drilling muds has been discouraged in hydrocarbon exploration and production in the marine environment but these muds are presently being used to a considerable degree in the United Kingdom and Norwegian sectors of the North Sea. Field studies in the North Sea have demonstrated only localized impacts around individual drilling sites,1,2 even including those sites where ‘toxic’ diesel oils were employed as base fluids in drilling muds. Yet the question of disposal of cuttings contaminated with oil from drilling muds remains somewhat controversial. The induction of mixed-function oxygenases (MFO) has been validated on a number of occasions in the field as a sensitive index of low level hydrocarbon exposure (reviewed by Payne),3 including sites in the North Sea where diesel-based muds were used.4 The present study demonstrates that any potential for induction by hydrocarbon contaminated cuttings will probably be reduced by substitution of low-aromatic base oils for diesel in drilling mud formulations.  相似文献   
4.
5.
The normal force coefficient on a flat planing surface having arbitrary heave and pitch motion in two-dimensional flow is compared with the lift coefficient of a thin wing in an infinite fluid. Despite the totally different derivations, they are found to be identical (at large Froude numbers and low trim angles and allowing for the wing's interaction with twice as much fluid) at low reduced frequencies. For higher frequency motions, the wing's angle of attack induced lift and its pitch and heave damping are less than those of a planing surface, but the acceleration terms remain identical. The differences at the higher reduced frequencies are due to the fact that, in invisad irrotational flow, the planning plate cannot leave a vortex wake, whereas a wing does.It seems to follow that the “virtual mass” planing hull analysis can be applied to “quasi-static” problems involving wings and bodies in an infinite fluid without the slenderness restriction originally imposed by Jones (1946). Certainly, it is remarkable that the so called “quasi-steady” forces on a two-dimensional wing can be obtained in a few lines of elementary analysis. On the other hand, the method fails entirely when used to compute the pitching moment on a two-dimensional plate, even though it has been found to give good results for the three-dimensional case (Payne, 1981c).This work is offered as a very incomplete study of an intriguing relationship between two very different bodies of analysis. Much more work will need to be done before the relationship between the two approaches will be fully understood.  相似文献   
6.
This issue marks a change in the editorial team of the ICESJournal of Marine Science, in that we have bid farewell to ourformer Editor-in-Chief, Niels Daan, after six years of sterlingservice, and to our Elsevier Publishing Editor, Andrew Richford,after an even longer period of years. Both deserve credit fortheir energy and vision that has left us the legacy of a journalas widely read and cited as the ICES Journal now is, but theyleave a gap that will be a huge challenge for us to meet. However,in my new capacity as Editor-in-Chief and in Els Bosma's capacityas Elsevier's Publishing Editor, I  相似文献   
7.
8.
Although cliffs form approximately 75% of the world's coastline, the understanding of the processes through which they evolve remains limited because of a lack of quantitative data on the morphological changes they undergo. In this paper the combination of terrestrial time-of-flight laser scanning with high-resolution digital photogrammetry is examined to generate high-quality data-sets pertaining to the geomorphic processes governing cliff development. The study was undertaken on a section of hard rock cliffs in North Yorkshire, UK, which has been monitored over a 12-month period. High-density, laser-scanned point clouds have been used to produce an accurate representation of these complex surfaces, free from the optical variations that degrade photographic data. These data-sets have been combined with high-resolution photographic monitoring, resampled with the fixed accuracies of the terrestrial laser survey, to generate a new approach to recording the volumetric changes in complex coastal cliffs. This has led to significant improvements in the understanding of the activity patterns of coastal cliffs.  相似文献   
9.
Relative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300-9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt.  相似文献   
10.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号