首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   2篇
  国内免费   3篇
测绘学   6篇
大气科学   18篇
地球物理   31篇
地质学   56篇
海洋学   11篇
天文学   10篇
综合类   2篇
自然地理   9篇
  2022年   2篇
  2021年   1篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   21篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   9篇
  2004年   9篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
1.
We studied the dissolved silica cycle in the water column of the North basin of Lake Lugano, Switzerland/Italy. Lake Lugano is a meromictic, eutrophic lake, permanently stratified below 100-m depth. A one-box model was used to calculate a silica mass-balance over 1993, based on various lake measurements, such as sediment traps, sediment cores, water analysis and biota countings. We found that the North basin of Lake Lugano is at steady state as far as dissolved silica is concerned. The primary source of dissolved silica in the lake is river input (about 80%), with diffusion from bottom sediments and groundwater input also playing a role. Atmospheric input is negligible. The main export of dissolved silica occurs via biogenic uptake by diatoms and final burial of their frustules in the bottom sediment. Loss of dissolved silica through the lake outflow only represents 15% of the total output. Of the total amount of Si exported to the lake bottom through diatom sinking, less than 20% is re-supplied to the surface water by diffusion. Thus, the lake acts as an important permanent sink for silica. The long residence time of dissolved silica in the lake (7 years) is related to the strong physical stratification of the lake. Only about 10% of the standing stock are available to phytoplankton uptake.  相似文献   
2.
The Palaeoproterozoic Dabla granitoid pluton of the North Khetri Copper Belt is located to the east of a NNE-SSW trending lineament with numerous albite-rich intrusives, the intraplate ‘albitite line’. The Dabla pluton is essentially made up of calcic amphibole-bearing granitoids, displaying a concentric bimodal distribution of alkali-feldspar granites, comprising a microcline-albite granite and an albite-granite. The dominant rock type is pink-coloured granite, which is characterised by quartz, microcline, albite and hastingsitic hornblende, and occurs in the marginal parts of the pluton. The volumetrically subordinate albite-granite in the central part of the pluton is invariably white in colour, non-foliated and is mainly composed of quartz, albite and amphibole of actinolite to ferro-actinolite composition. The albite-granite is characterised by low K2O (0.06-0.09%), Rb (<5 ppm) and Ba (<20 ppm), high Na2O (7.19-7.36%) and high Na/K ratios (122.4-185.2) as compared to the granite. These rocks are not subjected to any metamorphic overprint, especially the albite-granite, which shows pristine abundances of major and trace elements. The rocks are highly evolved as reflected in their high SiO2 (72 to 78%) contents and high DI (89.5-97) values. The Dabla granitoids are characterised by similar REE and spider patterns, displaying LREE enriched slopes, flat HREE profiles and strong negative Sr, P, Ti and Eu anomalies suggesting their comagmatic nature. Nevertheless, the granite is relatively more fractionated [(La/Yb)N = 3.89-8.19] and show higher REE abundances (466-673 ppm) as compared to the albite-granite [(La/Yb)N = 1.97-2.96; REE = 220-277 ppm]. Distinctive features of these rocks are their low Ca (0.21-1.53%), Mg (<0.02-0.19%), Al (11.84-12.96%) and Sr (12-46 ppm) abundances, high Zr (155-631 ppm), Y (67-156 ppm), Nb (14-91 ppm), and Ga (20-31 ppm) concentrations and high Fe*-number, high Ga/Al ratio and high agpaitic index (AI) values. These features, coupled with their ferroan, alkaline and metaluminous nature, are typical of within-plate aluminous A-type granites. The geochemical data further indicate that the Dabla magma was generated at fairly high temperature, apparently in an upper mantle region, under relatively low H2O activities and reduced conditions and emplaced at a shallow depth in an extensional tectonic environment.  相似文献   
3.
Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.  相似文献   
4.
5.
Changes in molecular size distribution associated with degradation of refractory DOM (macromolecules, apparent mol wt. ≥1500) by 3 strains of bacteria were investigated by Sephadex G-15 gel permeation chromatography and DOC analysis of the eluates. Macromolecules and bacteria were isolated from the same lake water sample, one taken in summer and one in winter. The decompositional changes of the DOM fraction were compared with respect to substance- and bacterial species-specific differences, and with respect to the action of photolysis and co-substrate supplementation. The metabolite patterns resulting from the simultaneous growth of the bacteria on the persistent DOM fraction and the labile co-substrate, glutamic acid were analyzed. The macromolecules differed in accessible components, and the bacteria degraded most effectively the DOM fraction of the parent lake water sample. Photolysis was the prerequisite for the reduction of the inaccessible bulk of the macromolecules. Glutamic acid enhanced the degradation of the macromolecules. The enhancement effect was impaired by the build up of waste products which balanced the losses of the DOM fraction. Three formation modes of refractory metabolites could be distinguished: formation of intensely UV absorbing small sized products which were poor in DOC during degredation of (1) the macromolecules of winter, and (2) of glutamic acid, and formation of (3) apparent high molecular weight substances from glutamic acid in cultures containing the macromolecules of summer which probably results from a stable linkage between the small sized metabolites of the amino acid and the DOM fraction. The research was supported by the Deutsche Forschungsgemeinschaft.  相似文献   
6.
7.
This research is based on a questionnaire of 556 peasant households in the Jianghan Plain. By analyzing the rate of participation of peasant households using a participation model, this study intends to explain the peasant household’s willingness to participate in disaster reduction and factors that influence willingness to participate. The investigation of participation rate revealed that households are generally concerned about engineering measures used for disaster reduction, but the willingness to participate is not strong; the peasant household’s attention to recommendations for non-engineering disaster reduction is high, but the willingness to participate is very low. The quantitative analysis of the participation model of disaster reduction showed that the level of peasant household’s willingness to participate in engineering and non-engineering disaster reduction was dependent upon their attitude toward a variety of measures of risk and the input costs of disaster reduction. The cognition of a disaster’s impact, fertility level of farmland, condition of irrigation canals, and amount of arable land have a remarkable influence on the willingness to participate in engineering and non-engineering disaster reduction. Age of household and joining cooperating organizations do not influence the willingness to participate in engineering and non-engineering disaster reduction. On the other hand, the education level, professional skills, and family size influence on one dimension of disaster reduction, but do not influence another dimension of disaster reduction.  相似文献   
8.
Quantitative information on vegetation and climate history from the late glacial-Holocene on the Tibetan Plateau is extremely rare. Here, we present palynological results of a 4.30-m-long sediment record collected from Koucha Lake in the Bayan Har Mountains, northeastern Tibetan Plateau. Vegetation change has been traced by biomisation, ordination of pollen data, and calculation of pollen ratios. The application of a pollen-climate calibration set from the eastern Tibetan Plateau to Koucha Lake pollen spectra yielded quantitative climate information. The area was covered by alpine desert/steppe, characteristic of a cold and dry climate (with 50% less precipitation than today) between 16,700 and 14,600 cal yr BP. Steppe vegetation, warm (∼ 1°C higher than today) and wet conditions prevailed between 14,600 and 6600 cal yr BP. These findings contradict evidence from other monsoon-influenced areas of Asia, where the early Holocene is thought to have been moist. Low effective moisture on the northeastern Tibetan Plateau was likely due to high temperature and evaporation, even though precipitation levels may have been similar to present-day values. The vegetation changed to tundra around 6600 cal yr BP, indicating that wet and cool climate conditions occurred on the northeastern Tibetan Plateau during the second half of the Holocene.  相似文献   
9.
The rates of Sb(III) oxidation by O2 and H2O2 were determined in homogeneous aqueous solutions. Above pH 10, the oxidation reaction of Sb(III) with O2 was first order with respect to the Sb(III) concentration and inversely proportional to the H+ concentrations at a constant O2 content of 0.22 × 10−3 M. Pseudo-first-order rate coefficients, kobs, ranged from 3.5 × 10−8 s−1 to 2.5 × 10−6 s−1 at pH values between 10.9 and 12.9. The relationship between kobs and pH was:
  相似文献   
10.
The potential impacts of climate change on potatoes cropping in the Peruvian highlands (Altiplano) is assessed using climate projections for 2071–2100, obtained from the HadRM3P regional atmospheric model of the Hadley Centre. The atmospheric model is run under two different special report on emission scenarios: high CO2 concentration (A2) and moderate CO2 concentration (B2) for four locations situated in the surroundings of Lake Titicaca. The two main varieties of potato cultivated in the area are studied: the Andean potato (Solanum tuberosum) and the bitter potato (Solanum juzepczukii). A simple process-oriented model is used to quantify the climatic impacts on crops cycles and yields by combining the effects of temperature on phenology, of radiation and CO2 on maximum yield and of water balance on yield deficit. In future climates, air temperature systematically increases, precipitation tends to increase at the beginning of the rainy season and slightly decreases during the rest of the season. The direct effects of these climatic changes are earlier planting dates, less planting failures and shorter crop cycles in all the four locations and for both scenarios. Consequently, the harvesting dates occur systematically earlier: roughly in January for the Andean potato instead of March in the current situation and in February for the bitter potato instead of April. Overall, yield deficits will be higher under climate change than in the current climate. There will be a strong negative impact on yields for S. tuberosum (stronger under A2 scenario than under B2); the impact on S. juzepczukii yields, however, appears to be relatively mixed and not so negative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号