首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   1篇
地质学   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Despite extensive studies of calc-silicate rocks of the Kokchetav massif, there is no satisfactory explanation of the origin of potassium-bearing clinopyroxene in alkali poor metamorphic rocks. In this paper we report the finding of potassium-bearing clinopyroxene with prograde zonation (K2O increases from core to rim) from diamond-grade, but diamond-free UHP calc-silicate rocks of the Kokchetav massif. We believe that the crystallization of potassium-bearing clinopyroxene started on the prograde stage and slightly prior to the peak of UHP metamorphism. Thus, prograde metamorphic history is only traceable in diamond-free UHP calc-silicate rocks, while in diamond-bearing UHPM rocks it is completely reset. Fluid and polyphase solid inclusions, originally representing melt inclusions, occur in the core of potassium-bearing clinopyroxene and imply that melt and fluid may coexist in calc-silicate rocks even at 1000–1100 °C and 6–7 GPa.  相似文献   
2.
Accurate simulation of seismic wave propagation in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic modeling, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or reference methods, or via direct comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs in a complex environment with strong-contrast reflectors and surface irregularities, as it can be difficult to determine the method which gives the best approximation of the “real” solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experiments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号