首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   6篇
地质学   17篇
海洋学   3篇
天文学   3篇
综合类   3篇
自然地理   1篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery (Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.  相似文献   
2.
Nagpal  Anushree  Hassan  Mohammad  Siddiqui  Masood Ahsan  Tajdar  Atiqua  Hashim  Mohammad  Singh  Abhra  Gaur  Suman 《GeoJournal》2021,86(2):649-661
GeoJournal - Sanitation is a multidimensional concept alluding primarily to provision of services for safe disposal of human excreta, provision of clean potable water as well as maintenance of...  相似文献   
3.
4.
This study investigates the control of jacket‐type offshore platforms. The deck displacement of jacket‐type offshore platforms can be controlled using both passive and active control mechanisms. Among the passive control mechanisms, a tuned mass damper concept is studied in this paper. Active control mechanisms considered here include the active mass damper, the active tendon mechanism and the propeller thruster. An optimal frequency domain approach to active control of wave‐excited platforms is used in which the H2 norm of the transfer function from the external disturbance to the regulated output is minimized. In this study, the hydrodynamic drag force is evaluated using the JONSWAP wave spectrum. Unlike conventional linearization approaches, the influence of non‐linearity in the drag force is retained in this scheme by expressing the non‐linear force components in terms of higher‐order convolutions of the water‐particle velocities. To demonstrate the effectiveness of this scheme, the platform performance with and without control devices under different sea states is evaluated. It is demonstrated that the control devices are useful in reducing the displacement response of jacket‐type offshore platforms, especially when the wave forces are concentrated at frequencies close to the natural frequencies of the platform. This becomes especially significant in deep waters because the natural frequencies of jacket‐type platforms fall closer to the dominant wave frequencies in deep waters. Adding control devices to deep water platforms will ensure a reduction both in the global response of the platform and in localized effects, such as the fatigue of welded joints. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
5.
This paper presents laboratory experiments and numerical simulations of effects of submerged obstacles on tsunami-like solitary wave and its run-up. This study was carried out for the breaking and non-breaking solitary waves on 1:19.85 uniform slope which contains a submerged obstacle. New laboratory experiments are performed to describe the mitigation of tsunami amplitude and run-up under the effect of submerged obstacles. We are based on experimental results obtained to validate the numerical model. The numerical modeling using COULWAVE aims essentially to show the effect of the obstacle on the shape of solitary wave and the limit of this effect. Using a multiple nonlinear regression, we have determined a model to estimate height of run-up according to the amplitude of the wave and the obstacle peak depth.  相似文献   
6.
The 8th October 2005 Kashmir Earthquake of magnitude 7.6 triggered a huge landslide 3.5 km upstream of Hattian Bala town in the state of Azad Jammu Kashmir of Pakistan. The debris mass blocked two tributaries of the Karli branch of the Jhelum River and was breached on 9th February 2010. This debris dam provided us with a rare opportunity to keep careful and continuous eyes on its post-earthquake behavior especially as it was a serious threat to people living along the lower reaches of both the Karli and Jhelum Rivers. This paper describes post-formation behaviors of the debris mass, breaching-inflicted changes of not only the debris mass but also both upstream and downstream reaches based upon laser-scanned images of landforms and Differential Global Positioning System survey results.  相似文献   
7.
The wind load effects on tension leg platforms have been recognized to be a significant environmental loading. An accurate assessment of the aerodynamic loads is, therefore, a prerequisite for the design of an economic and a reliable structure. The design codes and specifications recommend the use of a projected area approach that is thought to be conservative. The code recommendations fail to quantify aerodynamically induced forces in directions different to the mean wind flow. The interference and shielding effects suggested in some specifications provide only a simplistic view. Physical modeling as reported in this paper, therefore, continues to serve as the most accurate and practical means of predicting aerodynamic loads.The mean aerodynamic force and moment coefficients of a typical tension leg platform for various approach wind directions were measured on a scale model exposed to simulated flow conditions in a boundary layer wind tunnel. Major components on the upper deck of the model were designed for easy removal so that measurements could be obtained for different platform configurations. A parametric study was conducted to determine shielding and interference effects, i.e. the manner in which aerodynamic coefficients are influenced by the location and orientation of the ancillary structures on the platform, e.g. living quarters, flare boom, derricks, etc. The present paper addresses the wind tunnel modeling procedures and automated data acquisition and reduction methods. The aerodynamic force and moment coefficients with respect to the body and flow axes were reduced from the experimental measurements for azimuth angles of 0 to 360 degrees at 15-degree intervals. A total of eight configurations were monitored ranging from a platform configuration that included all the ancillary structures to the case where every deck component was removed. The aerodynamic coefficients obtained from the classification society recommended procedures provided conservative estimates in comparison with the measured values for all configurations. The results also illustrate that the interference effects among various ancillary structures on the platform are significant.  相似文献   
8.
This paper presents the experimental and numerical studies conducted on a steel column and a steel frame structure using free vibration analysis. The effects of damages on structures were investigated, which were simulated by introducing multiple cracks at different locations in the experimental and numerical models. The acceleration responses of the test models, were recorded through an accelerometer, and were used to calibrate the numerical models developed in finite element based software. Modal frequencies of damaged and undamaged structures were compared and analyzed, to derive relationships for damaged and undamaged structures' frequencies in terms of crack depth. It was found that, due to the presence of cracks, the mechanical properties of a structure changes, whereby, the modal frequencies decrease. An approximately linear trend was observed for the frequency decrease with the increase in crack depth, which was also confirmed by the numerical models. The derived relationships were extended to further develop a mechanics-based damage scale for steel structures, to help facilitate structural health monitoring and screening of vulnerable structures.  相似文献   
9.
The effect of Hall currents and collision with neutrals on the instability of a horizontal layer of a self-gravitating partially-ionized plasma of varying density have been studied. It is assumed that the plasma is permeated by a variable horizontal magnetic field stratified vertically. A variational principle is shown to characterize the problem. By making use of the existence of the variational principle, proper solutions have been obtained for a semi-infinite plasma in which density has a one-dimensional (exponential) vertical stratification. The dispersion relation has been derived and solved numerically. It is found that the collisions with neutrals have a stabilizing influence while Hall currents have a destabilizing influence.  相似文献   
10.
The present comparative study is multi-temporal in nature. The Revised Universal Soil Loss Equation (RUSLE), remote sensing, and GIS were used to model the soil loss estimation for soil conservation and vegetation rehabilitation in Nun Nadi watershed for the years 2000 and 2009. The estimated mean soil loss for the year 2000 and 2009 is 3,283.11 and 1,419.39 Mg?ha?1 year?1, respectively. The study finds that about 80 % area has low or least risk of erosion and about 7 % is exposed to high or very high risk which indicates the improvement in terms of soil loss if we compare the data of both the time periods. The findings show that the rainfall, LULC change, and elevation are the main responsible factors for the soil loss in Nun Nadi watershed. Conservation measures have been adopted; however, the problem still remains serious and demands urgent attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号