首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   46篇
  国内免费   15篇
测绘学   31篇
大气科学   99篇
地球物理   203篇
地质学   212篇
海洋学   52篇
天文学   160篇
综合类   3篇
自然地理   88篇
  2024年   8篇
  2023年   6篇
  2022年   4篇
  2021年   23篇
  2020年   22篇
  2019年   30篇
  2018年   42篇
  2017年   26篇
  2016年   42篇
  2015年   37篇
  2014年   34篇
  2013年   45篇
  2012年   34篇
  2011年   34篇
  2010年   35篇
  2009年   56篇
  2008年   35篇
  2007年   39篇
  2006年   19篇
  2005年   27篇
  2004年   18篇
  2003年   23篇
  2002年   16篇
  2001年   8篇
  2000年   22篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   10篇
  1991年   4篇
  1990年   6篇
  1988年   4篇
  1986年   7篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   8篇
  1976年   8篇
  1975年   10篇
  1974年   8篇
  1973年   5篇
排序方式: 共有848条查询结果,搜索用时 15 毫秒
1.
Groundbased radio observations indicate that Jupiter's ammonia is globally depleted from 0.6 bars to at least 4-6 bars relative to the deep abundance of ∼3 times solar, a fact that has so far defied explanation. The observations also indicate that (i) the depletion is greater in belts than zones, and (ii) the greatest depletion occurs within Jupiter's local 5-μm hot spots, which have recently been detected at radio wavelengths. Here, we first show that both the global depletion and its belt-zone variation can be explained by a simple model for the interaction of moist convection with Jupiter's cloud-layer circulation. If the global depletion is dynamical in origin, then important endmember models for the belt-zone circulation can be ruled out. Next, we show that the radio observations of Jupiter's 5-μm hot spots imply that the equatorial wave inferred to cause hot spots induces vertical parcel oscillation of a factor of ∼2 in pressure near the 2-bar level, which places important constraints on hot-spot dynamics. Finally, using spatially resolved radio maps, we demonstrate that low-latitude features exceeding ∼4000 km diameter, such as the equatorial plumes and large vortices, are also depleted in ammonia from 0.6 bars to at least 2 bars relative to the deep abundance of 3 times solar. If any low-latitude features exist that contain 3-times-solar ammonia up to the 0.6-bar ammonia condensation level, they must have diameters less than ∼4000 km.  相似文献   
2.
3.
Plesiosaurs     
Plesiosaurs are an unusual and intriguing group of extinct aquatic reptiles ( Fig. 1 ). They are sauropterygians, a group known from an array of semi‐aquatic forms during the Triassic period: placodonts, pachypleurosaurs and nothosaurs. The first plesiosaurs are known from the very latest Triassic, but by the Early Jurassic plesiosaurs were cosmopolitan in distribution and lasted successfully to the latest Cretaceous, when they became victims of the K‐T extinction event. Plesiosaurs were predominantly marine organisms, although their fossils are not uncommon in brackish or even fresh water deposits. We know that all plesiosaurs were carnivorous; many of them were top predators in their respective ecosystems. But with no living descendants (or analogues) plesiosaurs are mysterious fossil organisms—as we will see, many questions regarding their biology remain unanswered or contentious. However, plesiosaurs are currently undergoing renewed scientific attention.
Figure 1 Open in figure viewer PowerPoint The beautifully preserved skeleton of the plesiosaur Rhomaleosaurus victor seen in ventral view, from the Lower Jurassic (Toarcian) of Holzmaden, Germany (total length 3.44 m). Redrawn from Fraas (1910).  相似文献   
4.
A survey of the distribution of nonvolatile fatty acids and hydrocarbons in the oceans is given. The results represent more a “feel” from the literature rather than a mathematical analysis and are given in Table III. Fatty acid concentration appears to show a greater variation, presumably because they are more prone to biological influences than the hydrocarbons.  相似文献   
5.
In this paper we examine the use of bathymetric sidescan sonar for automatic classification of seabed sediments. Bathymetric sidescan sonar, here implemented through a small receiver array, retains the advantage of sidescan in speed through illuminating large swaths, but also enables the data gathered to be located spatially. The spatial location allows the image intensity to be corrected for depth and insonification angle, thus improving the use of the sonar for identifying changes in seafloor sediment. In this paper we investigate automatic tools for seabed recognition, using wavelets to analyse the image of Hopvågen Bay in Norway. We use the back-propagation elimination algorithm to determine the most significant wavelet features for discrimination. We show that the features selected present good agreement with the grab sample results in the survey under study and can be used in a classifier to discriminate between different seabed sediments.  相似文献   
6.
Methods developed earlier, based on hydration numbers for individual ionic species, have been extended to the calculation of ionic activity coefficients in aqueous systems of two electrolytes MX and NX2 with a common unhydrated anion (X). The data required include the mean activity coefficients of MX and NX2 in the mixtures, together with the osmotic coefficient. The procedure is illustrated by a calculation of γNa, γMg, and γCl in a mixture of NaCl and MgCl2 closely approximating the composition of seawater with salinity of 35‰.  相似文献   
7.
Engineering projects that require deformation monitoring frequently utilize geodetic sensors to measure displacements of target points located in the deformation zone. In situations where control stations and targets are separated by a kilometer or more, GPS can offer higher precision position updates at more frequent intervals than can normally be achieved using total station technology. For large-scale deformation projects requiring the highest precision, it is therefore advisable to use a combination of the two sensors. In response to the need for high precision, continuous GPS position updates in harsh deformation monitoring environments, a software has been developed that employs triple-differenced carrier-phase measurements in a delayed-state Kalman filter. Two data sets were analyzed to test the capabilities of the software. In the first test, a GPS antenna was displaced using a translation stage to mimic slow deformation. In the second test, data collected at a large open pit mine were processed. It was shown that the delayed-state Kalman filter developed could detect millimeter-level displacements of a GPS antenna. The actual precision attained depends upon the amount of process noise infused at each epoch to accommodate the antenna displacements. Higher process noise values result in quicker detection times, but at the same time increase the noise in the solutions. A slow, 25 mm displacement was detected within 30 min of the full displacement with sigma values in E, N and U of ±10 mm or better. The same displacement could also be detected in less than 5 h with sigma values in E, N and U of ±5 mm or better. The software works best for detecting long period deformations (e.g., 20 mm per day or less) for which sigma values of 1–2 mm are attained in all three solution components. It was also shown that the triple-differenced carrier-phase observation can be used to significantly reduce the effects of residual tropospheric delay that would normally plague double-differenced observations in harsh GPS environments.
Don KimEmail:
  相似文献   
8.
This article presents a micromechanical approach to the problem of unsaturated water flow in heterogeneous porous media in transient conditions. The numerical formulation is based on the two-scale model obtained previously by periodic homogenization. It allows for a coupled solution of the non-linear flow equations at macroscopic and microscopic scales and takes into account the macroscopic anisotropy of the medium and the local non-equilibrium of the capillary pressure. The model was applied to simulate two-dimensional water infiltration at constant flux into an initially dry medium containing inclusions of square and rectangular shapes. The numerical results showed the influence of the inclusion–matrix conductivity ratio and the local geometry on the macroscopic behavior. The influence of the conductivity ratio manifested itself by the acceleration or retardation of the onset of the macroscopic water flux at the outlet, while the local geometry (anisotropy) significantly affected the macroscopic spatial distribution of the water flux. Such type of approach can be extended to simulate coupled phenomena (for example hydro-mechanical problems) with evolving local geometry.  相似文献   
9.
This article is the first in a series designed to gain insight into the stellar oscillation problem from a somewhat novel point of view: that of potential scattering, well-known in the quantum mechanical literature. In this paper the known theoretical foundations are developed and applied in the context of the astrophysical problem, wherein the star itself (rather than any portion of it) is the potential which scatters waves and traps them. The basis for the identification of a precisely defined scattering problem is the existence of a linear Schrödinger equation associated both globally (Section 2) and locally (Section 8) with the nonlinear eigenvalue equation for nonradial stellar pulsations. The paper is also designed to be a fairly complete account of the relevant mathematical topics that are germane to a study of this kind. This paper is dedicated to the memory of Professor Zdenèk Kopal, who was a great source of professional encouragement to me during the last fifteen years of his life.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号