首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   7篇
  国内免费   2篇
测绘学   1篇
大气科学   14篇
地球物理   34篇
地质学   128篇
海洋学   12篇
天文学   20篇
自然地理   21篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   10篇
  2017年   6篇
  2016年   16篇
  2015年   8篇
  2014年   12篇
  2013年   14篇
  2012年   4篇
  2011年   16篇
  2010年   11篇
  2009年   18篇
  2008年   8篇
  2007年   12篇
  2006年   8篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   4篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
1.
Hydrothermal vein minerals directly associated with native gold mineralization in the Muruntau vein system (Uzbekistan) have been studied for noble gas, carbon isotope and halogen chemistry of the trapped ore-related fluids. Helium trapped in early arsenopyrite 1, which has preserved the original fluid signature better than associated scheelite and quartz, indicates a small input from a mantle source (?5% of total He). However, the overwhelming majority of the He in the fluid (∼95%) is from crustal sources. The noble gases Ne, Kr and Xe in the sample fluids are dominated by gases of atmospheric origin. The carbon isotope (δ13C: −2.1‰ to −5.3‰) and halogen characteristics of the fluids (log Br/Cl: −2.64 to −3.23) lend further support for the activity of juvenile fluids during the main ore stage. The high proportion of crustal components in the ore-forming fluids may be explained by intense fluid-rock interaction and is also supported by previous Nd and Sr isotope studies. The involvement of a juvenile fluid component during the main stage of hydrothermal activity at Muruntau (∼275 Ma) can be linked to the emplacement of lamprophyric dikes at Muruntau, due to apparently overlapping ages for high-temperature alteration, related ore vein formation and intrusion of the dikes. The input of mantle-derived fluids, possibly related to the Hercynian collisional event in the western Tien Shan, stimulated intense fluid-rock interaction in the crust. In this context, the mantle-derived fluid should be considered as one possible carrier of metals. Significant amounts of external meteoric fluids circulating in fracture systems are interpreted to have modified the noble gas signature of fluid in quartz, mostly during late, low temperature fluid circulation.  相似文献   
2.
 A monoclinic KAlSi3O8 feldspar Manebach twin boundary was synthesized by diffusion bonding and examined using high-resolution transmission electron microscopy. The sharp (001) twin boundary is straight and free of strain. The boundary width is smaller than d001. There is no rigid body shift observed at the twin boundary, and the feldspar structure is arranged symmetrically across (001). The twin boundary structure consists of bridged tetrahedral crankshafts, which are characteristic of the feldspar lattice. The grain boundary structure is in good agreement with the geometrical model of Taylor et al. (1934). The grain boundary composition of K1/2H1/2AlSi3O8 differs from their model. Received: 13 February 2002 / Accepted: 24 December 2002 Acknowledgements We thank M. Rühle, S. Hutt, J. Mayer, A. Strecker and U. Salzberger at MPI, Stuttgart, for their support and valuable advice in preparing TEM sections of bicrystals.  相似文献   
3.
Electron energy-loss spectroscopy EELS of the oxygen K edge of OH containing minerals and minerals with molecular water reveals a peak at about 528 eV prior to the onset of the O-K edge at 532 eV. This peak is never observed in minerals without water or OH groups. The intensity of the signal at 528 eV increases with increasing water content of the minerals. The peak at 528 eV is attributed to OH groups or water molecules. From the observations it is concluded that EELS provides a new method to determine the OH or water content of minerals with a spatial resolution far beyond that of optical spectroscopy. Received: 28 April 1997 / Revised, accepted: 25 July 1997  相似文献   
4.
We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200°C (LT) and 1400°C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to −180°C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group (Pnn2), whereas the HT polymorph assumes a higher symmetry space group (Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.  相似文献   
5.
We investigated the influence of thermal maturity on the hydrogen isotope ratios of sedimentary hydrocarbons to prove that the isotope ratio of hydrocarbons mirrors paleoclimate signatures. δD values from n-alkanes and acyclic isoprenoids of two sediment sections (Kupferschiefer [KS], 258 Ma, and Posidonienschiefer [PS], 184 Ma) with different maturation history were investigated. Both covered thermal maturity from 0.48 to 1.3 Rc (vitrinite reflectance and reflectance calculated from MPI1). Sediment burial up to 4500 m caused thermal maturation of organic matter in the KS horizon from the Early Zechstein basin of Poland, whereas contact metamorphic thermal maturation originated in the Early Toarcian PS (Posidonienschiefer) of the North German Vlotho Massif. The δD values of the extracted n-alkanes positively correlate with thermal maturity in the KS (y = 56‰ × MPI1[x] − 160‰ [VSMOW]) and in the PS (y = 104‰ × MPI1[x] − 200‰ [VSMOW]). The δD values of isoprenoids (i.e., pristane, phytane) were even more enriched with increasing maturity (y = 179‰ × MPI1[x] − 341‰ [VSMOW] in the KS; y = 300‰ × MPI1[x] − 415‰ [VSMOW] in PS).These results explain why isotope ratios of n-alkanes and isoprenoids in mature sediments are generally enriched in D and do not have the expected isotopic difference between n-alkanes and isoprenoids of ∼190‰. Moreover, the correlation between sediment maturity parameters and δD values suggests that after correction the δD values of n-alkanes can be used to reconstruct climate and environment in the geological past.  相似文献   
6.
7.
The paper reports scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) data on three cryptocrystalline (CC) cosmic spherules of chondritic composition (Mg/Si ≈ 1) from two collections taken up at glaciers at the Novaya Zemlya and in the area of the Tunguska event. The spherules show “brickwork” microtextures formed by minute parallel olivine crystals set in glass of pyroxene–plagioclase composition. The bulk-rock silicate chemistry, microtexture, mineralogy, and the chemical composition of the olivine and the local chemistry of the glass in these spherules testify to a chondritic source of the spherules. The solidification of the spherules in the Earth’s atmosphere was proved to be a highly unequilibrated process. A metastable state of the material follows, for example, from the occurrence of numerous nanometer-sized SiO2 globules in the interstitial glass. These globules were formed by liquid immiscibility in the pyroxene–SiO2 system. Troilite FeS and schreibersite (Fe,Ni)3P globules were found in the FeNi metal in one of the spherules, which suggests that the precursor was not chemically modified when melted in the Earth’s atmosphere. Our results allowed us to estimate the mineralogy of the precursor material and correlate the CC spherules with the chondrule material of chondrites. The bulk compositions of the spherules are closely similar to those of type-IIA chondrules.  相似文献   
8.
9.
In this article, we document a detailed analytical characterisation of zircon M127, a homogeneous 12.7 carat gemstone from Ratnapura, Sri Lanka. Zircon M127 has TIMS‐determined mean U–Pb radiogenic isotopic ratios of 0.084743 ± 0.000027 for 206Pb/238U and 0.67676 ± 0.00023 for 207Pb/235U (weighted means, 2s uncertainties). Its 206Pb/238U age of 524.36 ± 0.16 Ma (95% confidence uncertainty) is concordant within the uncertainties of decay constants. The δ18O value (determined by laser fluorination) is 8.26 ± 0.06‰ VSMOW (2s), and the mean 176Hf/177Hf ratio (determined by solution ICP‐MS) is 0.282396 ± 0.000004 (2s). The SIMS‐determined δ7Li value is ?0.6 ± 0.9‰ (2s), with a mean mass fraction of 1.0 ± 0.1 μg g?1 Li (2s). Zircon M127 contains ~ 923 μg g?1 U. The moderate degree of radiation damage corresponds well with the time‐integrated self‐irradiation dose of 1.82 × 1018 alpha events per gram. This observation, and the (U–Th)/He age of 426 ± 7 Ma (2s), which is typical of unheated Sri Lankan zircon, enable us to exclude any thermal treatment. Zircon M127 is proposed as a reference material for the determination of zircon U–Pb ages by means of SIMS in combination with hafnium and stable isotope (oxygen and potentially also lithium) determination.  相似文献   
10.
A first palynostratigraphic scheme of Upper Triassic deposits in northern Switzerland was established based on spore-pollen associations and dinoflagellate cyst records from the upper part of the Upper Triassic Klettgau Formation and the lower part of the Lower Jurassic Staffelegg Formation. Drill cores from the Adlerberg region (Basel Tabular Jura) and from Weiach (northern part of Canton Zurich) as well as from an outcrop at the Chilchzimmersattel (Basel Folded Jura) were studied and five informal palynological associations are distinguished. These palynological associations correlate with palynological association of the Central European Epicontinental Basin and the Tethyan realm and provide a stratigraphic framework for the uppermost Triassic sediments in northern Switzerland. Throughout the uppermost Triassic to Jurassic palynological succession a remarkable prominence of Classopollis spp. is observed. Besides Classopollis spp. the three Rhaetian palynological associations A to C from the Upper Triassic Belchen Member include typical Rhaetian spore-pollen and dinoflagellate taxa (e.g., Rhaetipollis germanicus, Geopollis zwolinskae, Rhaetogonyaulax rhaetica, and Dapcodinium priscum). Association B differs from association A in a higher relative abundance of the sporomorph taxa Perinopollenites spp. and the consistent occurrence of Granuloperculatipollis rudis and Ricciisporites tuberculatus. Spore diversity is highest in the late Rhaetian palynological association C and includes Polypodiisporites polymicroforatus. A Rhaetian age for the Belchen Member is confirmed by palynological associations A–C, but there is no record of the latest Rhaetian and the earliest Jurassic. In contrast to the Rhaetian palynological associations the Early Jurassic associations W and D include Pinuspollenites spp., Trachysporites fuscus (in association W), and Ischyosporites variegatus. In the view of the end-Triassic mass extinction and contemporaneous environmental changes the described palynofloral succession represents the pre-extinction phase (associations A and B) including a distinct transgression, the extinction phase (association C) associated with a regression, and the post-extinction phase (association W).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号