首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  国内免费   2篇
地球物理   5篇
地质学   30篇
天文学   1篇
自然地理   11篇
  2016年   2篇
  2013年   2篇
  2012年   1篇
  2010年   8篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
The bimodal NW Etendeka province is located at the continentalend of the Tristan plume trace in coastal Namibia. It comprisesa high-Ti (Khumib type) and three low-Ti basalt (Tafelberg,Kuidas and Esmeralda types) suites, with, at stratigraphicallyhigher level, interstratified high-Ti latites (three units)and quartz latites (five units), and one low-Ti quartz latite.Khumib basalts are enriched in high field strength elementsand light rare earth elements relative to low-Ti types and exhibittrace element affinities with Tristan da Cunha lavas. The unradiogenic206Pb/204Pb ratios of Khumib basalts are distinctive, most plottingto the left of the 132 Ma Geochron, together with elevated 207Pb/204Pbratios, and Sr–Nd isotopic compositions plotting in thelower 143Nd/144Nd part of mantle array (EM1-like). The low-Tibasalts have less coherent trace element patterns and variable,radiogenic initial Sr (  相似文献   
2.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
3.
4.
The controlling parameters of early marine carbonate cementation in shoal water and hemipelagic to pelagic domains are well‐studied. In contrast, the mechanisms driving the precipitation of early marine carbonate cements at deeper slope settings have received less attention, despite the fact that considerable volumes of early marine cement are present at recent and fossil carbonate slopes in water depths of several hundreds of metres. In order to better understand the controlling factors of pervasive early marine cementation at greater water depths, marine carbonate cements observed along time‐parallel platform to basin transects of two intact Pennsylvanian carbonate slopes are compared with those present in the slope deposits of the Permian Capitan Reef and Neogene Mururoa Atoll. In all four settings, significant amounts of marine cements occlude primary pore spaces downslope into thermoclinal water depths, i.e. in a bathymetric range between some tens and several hundreds of metres. Radial, radiaxial and fascicular optic fibrous calcites, and radiaxial prismatic calcites are associated with re‐deposited facies, boundstones and rudstones. Botryoidal (formerly) aragonitic precipitates are common in microbially induced limestones. From these case studies, it is tentatively concluded that sea water circulation in an extensive, near‐sea floor pore system is a first‐order control on carbonate ion supply and marine cementation. Coastal upwelling and internal or tidal currents are the most probable mechanisms driving pore water circulation at these depths. Carbonate cements precipitated under conditions of normal to elevated alkalinity, locally elevated nutrient levels and variable sea water temperatures. The implications of these findings and suggestions for future work are discussed.  相似文献   
5.
Hiati of various duration in carbonates are commonly expressed as discontinuity surfaces. The understanding of processes that form and affect these surfaces leads to an improved sequence-stratigraphic interpretation, a reliable outcrop correlation, and better models for reservoir compartmentalization. Various intraformational discontinuities were analysed and interpreted in a well-exposed study window, 2·5 km in lateral length and 60 m in height comprising the Barremian-Aptian Qishn Formation (Haushi-Huqf area, central Oman). This study focuses on the lateral extent and morphology of the surfaces, the petrography of the underlying rocks, and the facies changes and geochemical trends across these discontinuities. Furthermore, the lateral variability of discontinuity surfaces was documented. Three genetic types of discontinuities are differentiated: (i) erosion surfaces; (ii) omission surfaces (hard- and firmgrounds); and (iii) composite surfaces with evidence for both subaerial exposure and submarine boring. Field observations, combined with petrographic and geochemical data, suggest that 17 surfaces are laterally extensive for at least 20 km and record relative sea-level fluctuations of regional scale. In contrast, a large number of laterally limited surfaces (<1 km) are related to locally active processes such as waves and current erosion. The lateral variability along extensive surfaces is the result of the depositional environment below the discontinuity, the sea-floor topography, waves and currents and differential erosion. The most pronounced lateral variability is present along six laterally extensive composite surfaces that record terrestrial exposure and subsequent flooding of a tidal flat environment. This variability is caused by spatial variability in the tidal flat environment, meteoric alteration and differential erosion. This study emphasizes the spatial and temporal complexity of processes that form and modify discontinuity surfaces. This variability must be kept in mind when interpretations and correlations are based on one-dimensional sections or cores.  相似文献   
6.
Abstract— This paper describes the coordinated results of several sets of measurements of two Leonid meteor fireballs over northern New Mexico at 1:32 and 3:06 MST, respectively, on the night of 1998 November 17. The measurements included visible band photometry on both events, as well as filtered 5890 Å all-sky images of the Na airglow. Also, for the 3:06 a.m. event, we obtained an infrasound measurement of the hydrodynamic yield. For the 1:32 a.m. event, we obtained a set of visible band charge-coupled device (CCD) camera images of the meteor train for times extending to 30 min after the initial impact. The measurement results have been combined to derive an optical efficiency for the intense early-time optical flash, and the total explosion yields and masses for both of the meteors. We have also done a set of numerical radiation, hydrodynamic, and chemistry computations to investigate the nature and distribution of the long-lasting airglow. We attribute the brightest visible airglow to atomic O 5577 Å line emission, with additional contributions from atomic Na emission and NO2 chemiluminescence. The near-infrared atmospheric bands of molecular O2 should be very strong as well. All of the band emissions are expected to show a hollow limb-brightened structure.  相似文献   
7.
8.
Olivine-rich rocks containing olivine + orthopyroxene + spinel+ Ca-amphibole ± clinopyroxene ± garnet are presentin the central Ötztal–Stubai crystalline basementassociated with eclogites of tholeiitic affinity. These rockscontain centimetre-sized garnet layers and lenses with garnet+ clinopyroxene ± corundum. Protoliths of the olivine-richrocks are thought to be olivine + orthopyroxene + spinel dominatedcumulates generated from an already differentiated Fe-rich () tholeiitic magma that was emplaced into shallowcontinental crust. Protoliths of the garnet-rich rocks are interpretedas layers enriched in plagioclase and spinel intercalated ina cumulate rock sequence that is devoid of, or poor in, plagioclase.U–Pb sensitive high-resolution ion microprobe dating ofzircons from a garnet layer indicates that emplacement of thecumulates took place no later than 517 ± 7 Myr ago. Aftertheir emplacement, the cumulates were subjected to progressivemetamorphism, reaching eclogite-facies conditions around 800°Cand >2 GPa during a Variscan metamorphic event between 350and 360 Ma. Progressive high-P metamorphism induced breakdownof spinel to form garnet in the olivine-rich rocks and of plagioclase+ spinel to form garnet + clinopyroxene ± corundum inthe garnet layers. Retrogressive metamorphism at T 650–680°Cled to the formation of Ca-amphibole, chlorite and talc in theolivine-rich rocks. In the garnet layers, högbomite formedfrom corundum + spinel along with Al-rich spinel, Ca-amphibole,chlorite, aspidolite–preiswerkite, magnetite, ilmeniteand apatite at the interface between olivine-rich rocks andgarnet layers at P < 0·8 GPa. Progressive desiccationof retrogade fluids through crystallization of hydrous phasesled to a local formation of saline brines in the garnet layers.The presence of these brines resulted in a late-stage formationof Fe- and K-rich Ca-amphibole and Sr-rich apatite, both characterizedby extremely high Cl contents of up to 3·5 and 6·5wt % Cl, respectively. KEY WORDS: cumulates; Variscan metamorphism; SHRIMP dating; högbomite; saline brines  相似文献   
9.
In the Orlica‐?nie?nik complex at the NE margin of the Bohemian Massif, high‐pressure granulites occur as isolated lenses within partially migmatized orthogneisses. Sm–Nd (different grain‐size fractions of garnet, clinopyroxene and/or whole rock) and U–Pb [isotope dilution‐thermal ionization mass spectrometry (ID‐TIMS) single grain and sensitive high‐resolution ion microprobe (SHRIMP)] ages for granulites, collected in the surroundings of ?ervený D?l (Czech Republic) and at Stary Giera?tów (Poland), constrain the temporal evolution of these rocks during the Variscan orogeny. Most of the new ages cluster at c. 350–340 Ma and are consistent with results previously reported for similar occurrences throughout the Bohemian Massif. This interval is generally interpreted to constrain the time of high‐pressure metamorphism. A more complex evolution is recorded for a mafic granulite from Stary Giera?tów and concerns the unknown duration of metamorphism (single, short‐lived metamorphic cycle or different episodes that are significantly separated in time?). The central grain parts of zircon from this sample yielded a large spread in apparent 206Pb/238U SHRIMP ages (c. 462–322 Ma) with a distinct cluster at c. 365 Ma. This spread is interpreted to be indicative for variable Pb‐loss that affected magmatic protolith zircon during high‐grade metamorphism. The initiating mechanism and the time of Pb‐loss has yet to be resolved. A connection to high‐pressure metamorphism at c. 350–340 Ma is a reasonable explanation, but this relationship is far from straightforward. An alternative interpretation suggests that resetting is related to a high‐temperature event (not necessarily in the granulite facies and/or at high pressures) around 370–360 Ma, that has previously gone unnoticed. This study indicates that caution is warranted in interpreting U–Pb zircon data of HT rocks, because isotopic rejuvenation may lead to erroneous conclusions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号