首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   3篇
地质学   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 449 毫秒
1
1.
2.
The Izu–Bonin volcanic arc is an excellent example ofan intra-oceanic convergent margin. A total of 1011 chemicalanalyses of 17 Quaternary volcanoes of the arc are reviewedto estimate relative proportions of magmas erupted. Basalt andbasic andesite (SiO2 < 57 wt %) are the predominant eruptiveproducts of the Izu–Bonin arc, and rhyolite (SiO2 >70 wt %) forms another peak in volume. Such rhyolites possesscompositions identical to those of partial melts produced bydehydration-melting of calc-alkaline andesites at low pressure(<7 kbar). Meanwhile, the major element variation of theShirahama Group Mio-Pliocene volcanic arc suite, Izu Peninsula,completely overlaps that of the Quaternary Izu–Bonin arcvolcanoes, and groundmasses of Shirahama Group calc-alkalineandesites have compositions similar to those of Izu–Boninrhyolites. Moreover, phenocryst assemblages of calc-alkalineandesites of the Shirahama Group resemble restite phase assemblagesof dehydration-melting of calc-alkaline andesite. These linesof evidence suggest that the rhyolite magmas may have been producedby dehydration-melting of calc-alkaline andesite in the upperto middle crust. If so, then the presence of large amounts ofcalc-alkaline andesite (3–5 times more abundant than therhyolites) within the oceanic arc crust would be expected, whichis consistent with a recently proposed structural model acrossthe Izu–Bonin arc. The calc-alkaline andesite magmas maybe water saturated, and would crystallize extensively and solidifywithin the crust. The model proposed here suggests that rhyoliteeruptions could be triggered by an influx of hot basalt magmafrom depth, reheating and partially melting the calc-alkalineandesite component of the crust. KEY WORDS: bimodal magmatism; calc-alkaline andesite; oceanic arcs; rhyolite  相似文献   
3.
Boron isotope variations in the atmosphere   总被引:2,自引:0,他引:2  
We report here the first measurements of boron isotope ratios in the maritime atmosphere together with those of precipitation. The δ11B values of atmospheric condensates in the western North Pacific and Japanese coast and snow in Tokyo range from −12.8 to +5.1‰ and from −0.4 to +0.4‰, respectively, which are significantly lower than those of rainwater (+18.9 to +34.7‰) collected mostly over the North Pacific. Since the 11B/10B ratios of the atmosphere are lower than those of volcanic emissions (δ11B=+2.3 to +21.4‰), we must seek sources for atmospheric boron other than volcanism. We postulate that the sea may be an important supplier for atmospheric boron under some dynamic conditions and that boron isotope fractionation during evaporation from seawater and removal from the atmosphere may account for the large variations of 11B/10B ratios observed in the atmosphere and precipitation.  相似文献   
4.
5.
The incompatible element signatures of volcanic rocks formingJeju Island, located at the eastern margin of the Asian continent,are identical to those of typical intraplate magmas. The sourceof these volcanic rocks may be a mantle plume, located immediatelybehind the SW Japan arc. Jeju plume magmas can be divided intothree series, based on major and trace element abundances: high-aluminaalkalic, low-alumina alkalic, and sub-alkalic. Mass-balancecalculations indicate that the compositional variations withineach magma series are largely governed by fractional crystallizationof three chemically distinct parental magmas. The compositionsof primary magmas for these series, using inferred residualmantle olivine compositions, suggest that the low-alumina alkalicand sub-alkalic magmas are generated at the deepest and shallowestdepths by lowest and highest degrees of melting, respectively.These estimates, together with systematic differences in traceelement and isotopic compositions, indicate that the upper mantlebeneath Jeju Island is characterized by an increased degreeof metasomatism and a change in major metasomatic hydrous mineralsfrom amphibole to phlogopite with decreasing depth. The originalplume material, having rather depleted geochemical characteristics,entrained shallower metasomatized uppermost mantle material,and segregated least-enriched low-alumina alkalic, moderatelyenriched high-alumina alkalic, and highly enriched sub-alkalicmagmas, with decreasing depth. KEY WORDS: Jeju Island; magma genesis; mantle plume; subcontinental mantle  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号