首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
大气科学   3篇
地质学   5篇
  2014年   2篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Rice domestication and climatic change: phytolith evidence from East China   总被引:11,自引:0,他引:11  
Fossil rice phytoliths have been identified from a lateglacial to Holocene sequence of epicontinental sediments in the East China Sea that were probably transported by the Yangtze River from its middle and/or lower reaches. The rice phytoliths occurred first in the sequence at about 13900 cal. yr BP and disappeared during the period of 13000-10000 cal. yr BP, implying the earliest domesticated cereal crops of the world ever reported. Based on the records of phytoliths, pollen, diatoms and foraminifera from the sequence, the climate between 13000 and 10000 cal. yr BP was notably colder (Younger Dryas). The coincidence of disappearance of domesticated rice phytoliths with cold climate conditions may suggest a great climatic influence on human activities during that time. Warmer and wetter conditions during the period 13900 to 13000 cal. yr BP and after 10000 cal. yr BP have probably favoured rice domestication in the area.  相似文献   
2.
This study documents lowering of the surf zone (i.e. the upper shoreface) leading to intra-shoreface erosion, following two rapid relative sea-level falls along a tectonically uplifted coast during the Holocene, and the characteristics of the resultant prograding shoreface deposits. These findings are based on high-resolution analysis and radiocarbon dating of three new drill cores obtained from the Kujukuri strand plain, Pacific coast of eastern Japan, combined with previously published borehole data and information on modern shoreline profile adjustments. A shallowing-upward sandy succession composed of lower and upper shoreface facies, foreshore and backshore facies was recognized in the drill cores. Two rapid falls in relative sea-level at 2·3 to 2·6 and 1·8 to 2·0 ka are recorded by downstepping of the base of the foreshore facies, and farther seawards by the lowering of an erosional boundary between the upper and lower shoreface facies. Superimposed bed profiles of an adjacent modern beach define an envelope, the base of which reflects shore-normal migration of longshore bars and troughs. The base of the envelope represents an erosional surface that divides the surface mobile layer above from preserved deposits beneath. The surface is concave upwards and steeper than the mean beach profile, and exhibits a flat platform approximately at the lower limit of the upper shoreface equating to the storm surf zone. The seaward transition of this surface, rather than the mean equilibrium profile, controls the metre-scale to decimetre-scale internal structure of the Kujukuri shoreface deposits. Depositional models for sea-level fall based on an exponential equilibrium profile do not adequately account for the presence and migration of longshore bars and troughs.  相似文献   
3.
Boron isotope variations in the atmosphere   总被引:2,自引:0,他引:2  
We report here the first measurements of boron isotope ratios in the maritime atmosphere together with those of precipitation. The δ11B values of atmospheric condensates in the western North Pacific and Japanese coast and snow in Tokyo range from −12.8 to +5.1‰ and from −0.4 to +0.4‰, respectively, which are significantly lower than those of rainwater (+18.9 to +34.7‰) collected mostly over the North Pacific. Since the 11B/10B ratios of the atmosphere are lower than those of volcanic emissions (δ11B=+2.3 to +21.4‰), we must seek sources for atmospheric boron other than volcanism. We postulate that the sea may be an important supplier for atmospheric boron under some dynamic conditions and that boron isotope fractionation during evaporation from seawater and removal from the atmosphere may account for the large variations of 11B/10B ratios observed in the atmosphere and precipitation.  相似文献   
4.
5.
6.
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号