首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   8篇
地球物理   20篇
地质学   111篇
海洋学   1篇
天文学   9篇
自然地理   4篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   2篇
  2011年   9篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   2篇
  1965年   1篇
排序方式: 共有154条查询结果,搜索用时 0 毫秒
1.
 A monoclinic KAlSi3O8 feldspar Manebach twin boundary was synthesized by diffusion bonding and examined using high-resolution transmission electron microscopy. The sharp (001) twin boundary is straight and free of strain. The boundary width is smaller than d001. There is no rigid body shift observed at the twin boundary, and the feldspar structure is arranged symmetrically across (001). The twin boundary structure consists of bridged tetrahedral crankshafts, which are characteristic of the feldspar lattice. The grain boundary structure is in good agreement with the geometrical model of Taylor et al. (1934). The grain boundary composition of K1/2H1/2AlSi3O8 differs from their model. Received: 13 February 2002 / Accepted: 24 December 2002 Acknowledgements We thank M. Rühle, S. Hutt, J. Mayer, A. Strecker and U. Salzberger at MPI, Stuttgart, for their support and valuable advice in preparing TEM sections of bicrystals.  相似文献   
2.
Electron energy-loss spectroscopy EELS of the oxygen K edge of OH containing minerals and minerals with molecular water reveals a peak at about 528 eV prior to the onset of the O-K edge at 532 eV. This peak is never observed in minerals without water or OH groups. The intensity of the signal at 528 eV increases with increasing water content of the minerals. The peak at 528 eV is attributed to OH groups or water molecules. From the observations it is concluded that EELS provides a new method to determine the OH or water content of minerals with a spatial resolution far beyond that of optical spectroscopy. Received: 28 April 1997 / Revised, accepted: 25 July 1997  相似文献   
3.
The paper describes the construction of a long-term storage for critical waste. The base impermeability layer consisted of natural clay, whereby an additional 130,000 m3 of clay were placed on the existing 70,000 m2 clay stratum. The method of of placement and the permeability coefficients obtained are described.  相似文献   
4.
K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, upon which thermochronological modeling of Ar diffusion in discrete “domains” was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. 40Ar/39Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest “diffusion domains.” Heterochemical phases also play an important role in producing nonlinear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick’s Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the “diffusion domain” model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution among different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for 40Ar/39Ar hygrochronology as it is for U–Pb geochronology.  相似文献   
5.
We calculated focal mechanisms for 30 of the strongest events (1.5 M L 3.3) in distinct subregions of Vogtland/Western Bohemia between 1990 and 1998. Our investigations are concerned with events of the swarms near Bad Elster (1991), Haingrün (1991), Nový Kostel (1994 and 1997) and Zwickau (1998), two events from a group of earthquakes near Klingenthal (1997) and eight single events. Seismograms were provided by the digital station networks of the Geophysical Observatory of the University of Munich, the Technical University of Freiberg, the Academy of Sciences of the Czech Republic in Prague, the Masaryk University in Brno and some nearby stations of the German Regional Seismic Network (GRSN). To calculate focal mechanisms two inversion methods were applied. The inferred focal mechanisms do not show a simple, uniform pattern of seismic dislocation. All possible dislocation types – strike-slip, normal and thrust faulting - are represented. The prevailing mechanisms are normal and strike-slip faulting. Considerable differences in the fault plane solutions are noted for the individual subregions as well as in some cases among the individual events of a single swarm. For the Nový Kostel area we succeeded to resolve a change in the orientations of the nodal planes for the two successive swarms of December 1994 and January 1997. Besides this we also observe a change in the mechanisms, namely from strike-slip and normal faulting (December 1994) to strike-slip and thrust faulting (January 1997). Based on the inferred focal mechanisms the stress field was estimated. It turned out, that the dominating stress field in the region Vogtland/Western Bohemia does not substantially differ from the known stress field of West and Central Europe, being characterized by a SE-NW direction of the maximum compressive horizontal stress. We conclude that the seismicity in the Vogtland/Western Bohemia region is not predominantly caused by an independent local stress field, but rather controlled by the dominating stress regime in Central Europe.  相似文献   
6.
Libyan Desert Glass (LDG) is a SiO2-rich natural glass whose origin, formation mechanism, and target material are highly debated. We here report on the finding of a lens-shaped whitish inclusion within LDG. The object is dominantly composed of siliceous glass and separated from the surrounding LDG by numerous cristobalite grains. Within cristobalite, several regions rich in mullite often associated with ilmenite were detected. Mineral assemblage, chemical composition, and grain morphologies suggest that mullite was formed by thermal decomposition of kaolinitic clay at atmospheric pressure and T ≥ 1600 °C and also attested to high cooling rates under nonequilibrium conditions. Cristobalite contains concentric and irregular internal cracks and is intensely twinned, indicating that first crystallized β-cristobalite inverted to α-cristobalite during cooling of the SiO2-rich melt. The accompanied volume reduction of 4% induced the high density of defects. The whitish inclusion also contains several partly molten rutile grains evidencing that at least locally the LDG melt was at T ≥ 1800 °C. Based on these observations, it is concluded that LDG was formed by high-temperature melting of kaolinitic clay-, rutile-, and ilmenite-bearing Cenozoic sandstone or sand very likely during an asteroid or comet impact onto Earth. While melting and ejection occurred at high pressures, the melt solidified quickly at atmospheric pressure.  相似文献   
7.
Homogeneous single crystals of synthetic monticellite with the composition \({\text{Ca}}_{0.88}{\text{Mg}}_{1.12}{\text{SiO}}_4\) (Mtc I) were annealed in a piston-cylinder apparatus at temperatures between 1000 and \(1200\,^{\circ }\hbox {C}\), pressures of 1.0–1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite–forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is metastable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly temperature dependent. It varies from about 400 nm at \(1000\,^{\circ }\hbox {C}\) to 1200 nm at \(1100\,^{\circ }\hbox {C}\) in Sy I, and from 300 nm at \(1000\,^{\circ }\hbox {C}\) to 700 nm at \(1200\,^{\circ }\hbox {C}\) in Sy II. A thermodynamic analysis reveals that the temperature dependence of the characteristic spacing of the symplectite phases is due to a relatively high activation energy for chemical segregation by diffusion within the reaction front as compared to the activation energy for interface reactions at the reaction front. The temperature dependence of the characteristic lamellar spacing and the temperature-time dependence of overall reaction progress have potential for applications in geo-thermometry and geo-speedometry.  相似文献   
8.
9.
The paper reports scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) data on three cryptocrystalline (CC) cosmic spherules of chondritic composition (Mg/Si ≈ 1) from two collections taken up at glaciers at the Novaya Zemlya and in the area of the Tunguska event. The spherules show “brickwork” microtextures formed by minute parallel olivine crystals set in glass of pyroxene–plagioclase composition. The bulk-rock silicate chemistry, microtexture, mineralogy, and the chemical composition of the olivine and the local chemistry of the glass in these spherules testify to a chondritic source of the spherules. The solidification of the spherules in the Earth’s atmosphere was proved to be a highly unequilibrated process. A metastable state of the material follows, for example, from the occurrence of numerous nanometer-sized SiO2 globules in the interstitial glass. These globules were formed by liquid immiscibility in the pyroxene–SiO2 system. Troilite FeS and schreibersite (Fe,Ni)3P globules were found in the FeNi metal in one of the spherules, which suggests that the precursor was not chemically modified when melted in the Earth’s atmosphere. Our results allowed us to estimate the mineralogy of the precursor material and correlate the CC spherules with the chondrule material of chondrites. The bulk compositions of the spherules are closely similar to those of type-IIA chondrules.  相似文献   
10.
To get deeper insight into the phase relations in the end-member system Fe2SiO4 and in the system (Fe, Mg)2SiO4 experiments were performed in a multi-anvil apparatus at 7 and 13 GPa and 1,000–1,200°C as a function of oxygen fugacity. The oxygen fugacity was varied using the solid oxygen buffer systems Fe/FeO, quartz–fayalite–magnetite, MtW and Ni/NiO. The run products were characterized by electron microprobe, Raman- and FTIR-spectroscopy, X-ray powder diffraction and transmission electron microscopy. At fO2 corresponding to Ni/NiO Fe-ringwoodite transforms to ferrosilite and spinelloid according to the reaction: 9 Fe2SiO4 + O2 = 6 FeSiO3 + 5 Fe2.40Si0.60O4. Refinement of site occupancies in combination with stoichiometric Fe3+ calculations show that 32% of the total Fe is incorporated as Fe3+ according to From the Rietveld refinement we identified spl as spinelloid III (isostructural with wadsleyite) and/or spinelloid V. As we used water in excess in the experiments the run products were also analyzed for structural water incorporation. Adding Mg to the system increases the stability field of ringwoodite to higher oxygen fugacity and the spinel structure seems to accept higher Fe3+ but also water concentrations that may be linked. At oxygen fugacity corresponding to MtW conditions similar phase relations in respect to the breakdown reaction in the Fe-end-member system were observed but with a strong fractionation of Fe into spl and Mg into coexisting cpx. Thus, through this strong fractionation it is possible to stabilize very Fe-rich wadsleyite with considerable Fe3+ concentrations even at an intermediate Fe–Mg bulk composition: assuming constant K D independent on composition and a bulk composition of x Fe = 0.44 this fractionation would stabilize spl with x Fe = 0.72. Thus, spl could be a potential Fe3+ bearing phase at P–T conditions of the transition zone but because of the oxidizing conditions and the Fe-rich bulk composition needed one would expect it more in subduction zone environments than in the transition zone in senso stricto.
M. Koch-MüllerEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号