首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
大气科学   4篇
地球物理   7篇
地质学   3篇
海洋学   2篇
自然地理   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2002年   5篇
  1999年   1篇
  1996年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   
2.
3.
4.
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside.  相似文献   
5.
6.
In this study, satellite-based daily precipitation estimation data from precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN)-climate data record (CDR) are being evaluated in Iran. This dataset (0.25°, daily), which covers over three decades of continuous observation beginning in 1983, is evaluated using rain-gauge data for the period of 1998–2007. In addition to categorical statistics and mean annual amount and number of rainy days, ten standard extreme indices were calculated to observe the behavior of daily extremes. The results show that PERSIANN-CDR exhibits reasonable performance associated with the probability of detection and false-alarm ratio, but it overestimates precipitation in the area. Although PERSIANN-CDR mostly underestimates extreme indices, it shows relatively high correlations (between 0.6316–0.7797) for intensity indices. PERSIANN-CDR data are also used to calculate the trend in annual amounts of precipitation, the number of rainy days, and precipitation extremes over Iran covering the period of 1983–2012. Our analysis shows that, although annual precipitation decreased in the western and eastern regions of Iran, the annual number of rainy days increased in the northern and northwestern areas. Statistically significant negative trends are identified in the 90th percentile daily precipitation, as well as the mean daily precipitation from wet days in the northern part of the study area. The positive trends of the maximum annual number of consecutive dry days in the eastern regions indicate that the dry periods became longer in these arid areas.  相似文献   
7.
The study investigates perspectives of the parameter estimation problem with the adjoint method in eddy-resolving models. Sensitivity to initial conditions resulting from the chaotic nature of this type of model limits the direct application of the adjoint method by predictability. Prolonging the period of assimilation is accompanied by the appearance of an increasing number of secondary minima of the cost function that prevents the convergence of this method. In the framework of the Lorenz model it is shown that averaged quantities are suitable for describing invariant properties, and that secondary minima are for this type of data transformed into stochastic deviations. An adjoint method suitable for the assimilation of statistical characteristics of data and applicable on time scales beyond the predictability limit is presented. The approach assumes a greater predictability for averaged quantities. The adjoint to a prognostic model for statistical moments is employed for calculating cost function gradients that ignore the fine structure resulting from secondary minima. Coarse resolution versions of eddy-resolving models are used for this purpose. Identical twin experiments are performed with a quasigeostrophic model to evaluate the performance and limitations of this approach in improving models by estimating parameters. The wind stress curl is estimated from a simulated mean stream function. A very simple parameterization scheme for the assimilation of second-order moments is shown to permit the estimation of gradients that perform efficiently in minimizing cost functions.  相似文献   
8.
9.
Merging multiple precipitation sources for flash flood forecasting   总被引:3,自引:0,他引:3  
We investigated the effectiveness of combining gauge observations and satellite-derived precipitation on flood forecasting. Two data merging processes were proposed: the first one assumes that the individual precipitation measurement is non-bias, while the second process assumes that each precipitation source is biased and both weighting factor and bias parameters are to be calculated. Best weighting factors as well as the bias parameters were calculated by minimizing the error of hourly runoff prediction over Wu-Tu watershed in Taiwan. To simulate the hydrologic response from various sources of rainfall sequences, in our experiment, a recurrent neural network (RNN) model was used.

The results demonstrate that the merged method used in this study can efficiently combine the information from both rainfall sources to improve the accuracy of flood forecasting during typhoon periods. The contribution of satellite-based rainfall, being represented by the weighting factor, to the merging product, however, is highly related to the effectiveness of ground-based rainfall observation provided gauged. As the number of gauge observations in the basin is increased, the effectiveness of satellite-based observation to the merged rainfall is reduced. This is because the gauge measurements provide sufficient information for flood forecasting; as a result the improvements added on satellite-based rainfall are limited. This study provides a potential advantage for extending satellite-derived precipitation to those watersheds where gauge observations are limited.  相似文献   

10.
Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号